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Abstract. We study the design of mechanisms for a sequencing problem where the types of job-agents
consist of processing times and waiting costs that are private to the jobs. In the Bayes-Nash setting,
we seek to find a sequencing rule and incentive compatible payments that minimize the total expected
payments that have to be made to the agents. It is known that the problem can be efficiently solved
when jobs have single dimensional types. Here we address the problem with two-dimensional types. We
show that the problem can be solved in polynomial time by linear programming techniques, answering
an open problem formulated by Heydenreich et al. Our implementation is randomized and truthful in
expectation. Remarkably, it also works when types are correlated across jobs. The main steps are a
compactification of an exponential size linear programming formulation, and a convex decomposition
algorithm that allows us to implement the optimal linear programming solution. In addition, by means
of computational experiments we generate some new insights into the implementability in different
equilibria.

1 Introduction & Contribution

This paper addresses Bayesian mechanism design for a basic sequencing problem that has been intro-
duced by Heydenreich et al. (2008). The setting is a simple scheduling problem with private data: A
number of n clients are queueing for a service, the service provider needs to compensate all clients for
their waiting time, but waiting costs and service times are private to the clients. This problem is an
abstraction of economic situations where clients queue for a single scarce resource, e.g., a specialized
operation theater, where the information on the urgency and duration to treat each client is private,
yet known probabilistically. A concrete example for the latter that motivates the present study are
waiting lists for medical treatments in the Netherlands (Kenis, 2006). At the same time, the problem is
the private information version of one of the most basic and classical single machine scheduling prob-
lems, namely to minimize the total weighted completion time of nonpreemptive jobs with weights wj
and processing times pj . This problem is close to trivial from the optimization point of view, and the
optimal sequence is to process the jobs in order of non-increasing ratios weight over processing time,
wj/pj , also referred to as Smith’s rule (Smith, 1956). However, once the data wj and pj is private the
solution is less obvious.
The problem that we solve is this: There are n jobs with two-dimensional types, namely a cost per
unit waiting time, wj , and a processing time, pj . Jobs need to be scheduled sequentially and non-
preemptively, and each job requires monetary compensation for the disutility of waiting. Assuming that
we are given probabilistic information on the possible types of all jobs, we seek to find a sequencing
rule, along with an incentive compatible payment rule, that minimizes the total expected payments
that have to be made to the jobs. Here, incentive compatibility refers to the Bayes-Nash equilibrium.
As our main result we show that this optimal mechanism design problem with two-dimensional types
can be solved and implemented in polynomial time. Our approach even allows the types of the jobs to
be correlated. We thereby answer an open question posed by Heydenreich et al. (2008). Our solution
is based on linear programming, and results in an optimal randomized mechanism.
The paper has two major technical contributions. The first is the compactification of an exponential
size linear programming formulation of the mechanism design problem. This compactification yields
a polynomial size linear programming relaxation. The second is an algorithm that allows to translate
the solution of the linear programming relaxation into an actual implementation of the mechanism,
that is, a randomization over schedules. To that end, we reduce the implementation problem to that of



computing the intersection of a line with the single machine scheduling polytope, for which we give a
combinatorial O(n2 logn) algorithm. The implementation problem is thereby solved in time O(n3 logn).
Moreover, we present some computational results based on the linear programming formulation. The
primary goal of these computations is to test and validate hypotheses on the structure of solutions.
Our computations, based on randomly generated instances, show that optimal mechanisms in the
two-dimensional setting do not share several of the nice properties of the solutions to the single di-
mensional problem: The scheduling rules of optimal Bayes-Nash incentive compatible mechanisms are
not necessarily iia (independent of irrelevant alternatives) and optimal Bayes-Nash mechanisms do not
necessarily allow an implementation in dominant strategies. This is in contrast to the single dimensional
problem, which has these properties (Duives et al., 2015).
In addition, we address a variation of the problem where job-agents are also allowed to understate their
true processing requirement. For that problem, we derive a purely combinatorial solution by showing
that the problem effectively reduces to a stochastic single machine scheduling problem, which is solved
by the stochastic version of Smith’s rule.

2 Related Work

The starting point of this paper is the open problem formulated by Heydenreich et al. (2008) who ‘leave
it as an open problem to identify (closed formulae for) optimal mechanisms for the 2-d case.’ Here,
the ‘2-d case’ refers to the problem of computing a Bayes-Nash optimal mechanism for the mechanism
design problem with two-dimensional types, where weights and processing times of the jobs are private
information. The case where types are single-dimensional, and only the weights are private, can be
solved efficiently along the lines of Myerson (1981). We refer to Heydenreich et al. (2008) and Duives
et al. (2015) for details, and note that they also give structural insights into the case where types are
two-dimensional. Yet, the computational complexity of the optimal mechanism design problem with
two-dimensional types was left open.
Even though we settle the computational complexity of the problem to compute an optimal (random-
ized) mechanism, we do not obtain ‘closed formulae’ for its solution. Our results can therefore be seen
in the tradition of ‘automated mechanism design’ as proposed e.g. by Conitzer and Sandholm (2002)
and Sandholm (2003), since the design of the mechanism itself is based on linear programming.
There is abundant related work in optimal mechanism design, starting with the seminal paper by
Myerson (1981). As a matter of fact, problems with single dimensional types are considered pretty
well understood, and we refer to the chapter on profit maximization in mechanism design by Hartline
and Karlin (2007). Algorithmic results for problems with multidimensional types have been obtained
more recently (e.g. Alaei et al., 2012; Cai et al., 2012; Daskalakis and Weinberg, 2012), with a fast
growing literature. We refer to a recent survey by Chawla and Sivan (2014) for an excellent overview
and relevant references for recent advances in algorithmic Bayesian mechanism design. There is also a
series of recent papers that provide insight into interesting anomalies in multi-dimensional mechanism
design, or more specifically, multi-item auction problems (e.g. Hart and Nisan, 2014; Hart and Reny,
2015).
With respect to recent work on mechanism design with multidimensional types, our work has some
methodological similarities with recent work on Bayesian mechanism design by Daskalakis and Wein-
berg (2012). They address a multidimensional, multi-item auction problem, and also compactify an
exponential size linear program by exploiting symmetry in value distributions. Doing that, they derive
approximately optimal, randomized Bayes-Nash mechanisms. Due to implicit informational external-
ities3 the sequencing problem considered here cannot easily be cast in those terms. Yet, with some
additional work one can observe that the techniques of Cai et al. (2012) can be applied also to the
problem studied here, and then imply that a close to optimal Bayesian mechanism can be found in poly-
nomial time. However, those techniques do not lead to an explicit, polynomial size linear programming
model for the optimal mechanism design problem, which we do provide here. Moreover, our compact-
ification does not rely on eliminating symmetries in value distributions, but rather on the elimination
of what could be called ‘irrelevant alternatives’ for the optimal randomized mechanism.
Also, with respect to the actual implementation of the mechanism, we acknowledge a close similarity
to the work of Cai et al. (2012), since also there, interim allocations need to be translated into ran-
domizations over mechanisms, in their case VCG allocation rules. But instead of relying on a general

3 That is, the valuation of an agent for a given solution depends on types of other agents, too.
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separation oracle and the ellipsoid method, we here explicitly solve the underlying decomposition prob-
lem by giving a combinatorial algorithm. This is of independent interest both from the perspective of
mechanism design and from the perspective of polyhedral combinatorics.

3 Definitions & Preliminary Results

We consider a sequencing problem with n job-agents denoted j ∈ N , each owning a job with weight
wj and processing time pj . The jobs need to be sequenced non-preemptively on a single machine, with
the interpretation that wj is job j’s individual cost for waiting one unit of time, while pj is the time it
requires to process job j. In a schedule where job j has start time sj , the job?s individual cost for waiting
sj time units equals wjsj . The type of a job j is the two-dimensional vector of weight and processing
time, denoted tj = (wj , pj). If tj is public, the total waiting cost is well known to be minimized by
sequencing the jobs in order of non increasing ratios wj/pj , known as Smith’s rule (Smith, 1956).
In the setting we consider here, weight and processing time are private to the agent that owns the job.
There is, however, a public belief about this private information, which is

– the types that jobs 1, . . . , n might have are t = (t1, . . . , tn) ∈ T , and T is known, and
– the probability of the jobs having types t = (t1, . . . , tn) is ϕ(t), and also ϕ is known .

Hence, T = T1× . . .×Tn is the type space of all jobs, and we refer to the type of one specific job j as tj ,
with tj ∈ Tj = {t1j , . . . , t

mj

j }, where Tj denotes the set of mj possible types for this job. Notice that we
assume the type space T to be discrete. If necessary, continuous type spaces could be approximated by
corresponding discretizations. Indeed, in the words of Vohra (2012), ‘nothing of qualitative significance
is lost in moving from a continuous to a discrete type space’.
We define m :=

∑
j∈N mj , and note that m ≥ n. For a type tj ∈ Tj , we let wj and pj be the

corresponding weight and processing time, respectively. For convenience, we also use the notation
pj(tj) and wj(tj) to denote the processing time and weight of a job with type tj = (wj , pj), as well
as pj(t) and wj(t) to denote the processing time and weight of a job j in type vector t. In subsequent
linear programming formulations, again for convenience, we sometimes add an index for the specific
type i of a given job j. We then use tij for that type, and often identify i with tij , to avoid excessive
notation.
As usual (tj , t−j) denotes a type vector where tj is the type of job j and t−j are the types of all jobs
except j, with t−j ∈ T−j :=

∏
k 6=j Tk. Generally, we may even allow correlation across types of different

jobs. In that case, for fixed type tj of job j, we let ϕ(tj) :=
∑
t−j

ϕ(tj , t−j) be the (unconditional) proba-

bility of job j having type tj . Likewise, let ϕ(t−j) :=
∑
tj
ϕ(tj , t−j). Then ϕ(tj |t−j) = ϕ(tj , t−j)/ϕ(t−j)

is the conditional probability for job j having type tj , given t−j is the types of all other jobs. Likewise,
ϕ(t−j |tj) = ϕ(tj , t−j)/ϕ(tj).
For uncorrelated type distributions, the succinct input of the problem consists of mj types for all jobs
j, hence of m =

∑
j∈N mj pairs of numbers tj = (wj , pj), with corresponding probabilities ϕ(tj). In

that case, the input size of the problem is of order Θ(m), assuming that each of these numbers has size
O(1). For correlated types, the input size of the problem could be as large as the size of the type space
T , which may be exponential in m. In that case, to circumvent complicated reasoning about the input
size of the type distribution, we will assume that it is accessed through oracle queries for any value
ϕ( · ), conditional or unconditional, in O(1) time.
We assume, like Heydenreich et al. (2008), that the mechanism designer needs to compensate the jobs
for waiting by a payment. We seek to compute and implement a (direct) mechanism, consisting of a
scheduling rule and a payment rule. More specifically, the mechanism assigns to any type vector t ∈ T
a vector s(t) that represents the start times of all jobs in the sequence selected by the mechanism,
together with a vector of compensation payments π(t), with πj(t) being the payment for job j. Clearly,
jobs may have an incentive to strategically misreport their true types in order to receive earlier positions
in the sequence and/or higher compensation payments. The optimal mechanism that we seek is not
welfare maximization, which is equivalent with minimizing the total waiting time. Rather, we seek a
mechanism that minimizes the total payments made to the jobs. This is the equivalent to the revenue
maximizing auction of Myerson (1981).

3.1 Modeling Private Processing Times

For the major part of this paper we assume, like Heydenreich et al. (2008), that job-agents can misreport
their true processing times pj , but with the restriction that only larger than the true processing times
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can be reported by any job. This assumption is justified in a model where job-agents need to make sure
that they receive at least their (true) required processing. That means that, effectively, their utility
is independent of the actual processing they receive, as long as it is at least as large as the true pj .
Reporting a processing time smaller than the true processing time would result in leaving the job
unfinished and this results in a zero (or any negative) utility. Hence no job-agent would ever choose
this option. On the other hand, a job-agent may strategize on reporting a larger than true processing
time if that increases the (expected) utility.
In addition, in Appendix A we address the alternative setting where jobs can report processing times
smaller than their true processing time. As before, the underlying assumption is that the utility of
a job-agent is independent of the actual processing time received, in the sense that a job is satisfied
with the claimed processing time. We show that in this setting the optimal mechanism is the one that
sequences the jobs in the order of the ratios virtual weight over expected processing time. Interestingly,
this result is based on the insight that the two-dimensional mechanism design problem reduces to a
single dimensional problem, yet with stochastic processing times. The optimal mechanism then follows
from the fact that the stochastic single machine scheduling problem is solved by Smith’s rule, with
processing times replaced by expected processing times (Rothkopf, 1966).

3.2 Incentive Compatibility

For a given mechanism, we denote by Esij and πij the expected start time and payment for job j when
he reports to be of type tij , where the expectation Esij is taken over all (truthful) reports of other jobs
t−j ∈ T−j . Then the expected (quasi-linear) utility for job j with true type tij = (wij , p

i
j) is exactly

πij − wijEsij .

A mechanism is truthful, or more precisely Bayes-Nash incentive compatible, if it fulfils the following,
linear constraint

πij − wijEsij ≥ πi
′
j − wijEsi

′
j ,

for all jobs j and types tij , t
i′
j ∈ Tj , such that pj(t

i
j) ≤ pj(ti

′
j ). The constraint says that reporting types

truthfully yields higher expected utility than anything else. A scheduling rule for which there exists a
payment scheme so that the resulting mechanism is Bayes-Nash incentive compatible, is called Bayes-
Nash implementable. Note that in the Bayesian setting, payments πij are defined per type tij of any job
j, but not for each of the (in general exponentially many) vectors of types t ∈ T .
Moreover, we impose (expected) individual rationality, that is, the expected utility of any job should
be nonnegative,

πij − wijEsij ≥ 0 .

This constraint makes sure that the optimization problem under consideration is bounded.
It is interesting to ask if a scheduling rule can even be implemented in the stronger dominant strategy
equilibrium. Manelli and Vincent (2010) indeed show the equivalence of Bayes-Nash and dominant
strategy implementations for the case of standard single unit private value auctions. In a dominant
strategy equilibrium, reporting the true type maximizes the utility of a job not only in expectation but
for any report t−j of the other jobs, that is,

πj(t
i
j , t−j)− wijsj(tij , t−j) ≥ πj(ti

′
j , t−j)− wijsj(ti

′
j , t−j)

for all tij , t
i′
j ∈ Tj and all t−j ∈ T−j . The latter obviously implies the former, but generally not vice

versa (Gershkov et al., 2013). We comment on dominant strategy implementations in Section 6, but
are mainly interested in the Bayesian setting.
For the problem considered here, it is known that implementability is equivalent to monotonicity with
respect to weights:

Theorem 1 (Duives et al. (2015)). A mechanism is Bayes-Nash implementable if and only if the
expected start times Esij are monotonically decreasing in the reported weight wij.

The same result holds for dominant strategy implementability, but then the start times sj(t
i
j , t−j) need

to be monotonically decreasing in the reported weight wij , for all t−j ∈ T−j . This is a standard result
in single-dimensional mechanism design, see for instance the introductory text by Nisan (2007), but
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it is also true for the two-dimensional problem considered here; see Duives et al. (2015, Theorems 1
and 6). With respect to optimal mechanisms, for the special case where only weights wj are private
and processing times pj are known, the Bayes-Nash optimal mechanism has a simple combinatorial
structure. It is Smith’s rule with respect to virtual instead of the original weights, i.e., jobs are sequenced
in non-increasing order of the ratios virtual weight over processing time (Duives et al., 2015).

4 Problem Formulation & Linear Relaxation

We first set up an integer linear programming formulation that describes the problem of finding an
optimal Bayes-Nash incentive compatible and individual rational mechanism. The starting point is an
integer linear programming formulation for the scheduling polytope in terms of so-called linear ordering
variables, dkj(t), with intended meaning

dkj(t) =

{
1 if for type vector t we use a schedule where job k precedes job j ,

0 otherwise .

See also Dyer and Wolsey (1990). The following constraints ensure that the linear ordering variables
indeed describe a linear ordering:

djj(t) = 0 ∀j, t (1)

dkj(t) + djk(t) = 1 ∀j, k, t j 6= k (2)

djk(t) + dkl(t) ≤ 1 + djl(t) ∀j, k, l, t (3)

djk(t) ∈ {0, 1} ∀j, k, t . (4)

Here (3) is the triangle inequality. In terms of these linear ordering variables, for any given vector of
types t, the corresponding start times of jobs in the sequence corresponding to that linear ordering are
linearly expressed as

sj(t) =
∑
k∈N

dkj(t)pk(t) , (5)

recalling that pj(t) denotes the processing time of job j in type profile t. Observe that, for a given type
vector t, the vectors s(t) given by (1)-(5) are vectors of start times of the jobs. These are the vertices
of the well known single machine scheduling polytope (Dyer and Wolsey, 1990; Queyranne, 1993), with
the only difference that we consider start instead of completion times. The polytope is exactly the
convex hull of all vectors of start times of all n! job sequences. Here, it will be denoted by Q(t). It
is well known that the scheduling polytope is a (contra)polymatroid, which is easily verified by the
transformation to xj(t) = pj(t)sj for all j ∈ N . Note that both linear optimization over Q(t), as well
as the separation problem for Q(t) can be solved in time O(n2) (Edmonds, 1971; Queyranne, 1993).

As it will be important for what follows, we next recall a well known linear description of the single
machine scheduling polytope due to Queyranne (1993). To that end, recall that the variables (s1, . . . , sn)
denote the start times of jobs. We know from Queyranne (1993) that the facial description of the
polytope Q(t) is given by the following set of inequalities

∑
j∈K

pj(t)sj ≥
1

2

(∑
j∈K

pj(t)

)2

− 1

2

∑
j∈K

pj(t)
2 ∀K ⊂ N (6)

∑
j∈N

pj(t)sj =
1

2

(∑
j∈N

pj(t)

)2

− 1

2

∑
j∈N

pj(t)
2 . (7)

The last equality excludes schedules with idle time. The vertices of Q(t) are exactly the vectors of
start times of all n! job sequences. Note that Q(t) is (n− 1)-dimensional. Therefore, any (inner) point
of Q(t) represents feasible expected start times of a randomization over (at most n) schedules, by
Carathéodory’s theorem.
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Using linear ordering variables now yields the following mixed integer linear programming formulation
of the optimal Bayesian mechanism design problem. Here we use the shorthand notation ϕij := ϕ(tij)
for the probability of job j having type tij . Also, by t 3 tij we denote all type vectors t = (tij , t−j) ∈ T .

min
∑
j∈N

∑
tij∈Tj

ϕijπ
i
j (8)

s.t. πij ≥ wijEsij ∀j, i (9)

πij ≥ πi
′
j − wij(Esi

′
j − Esij) ∀j, i, i′, pj(ti

′
j ) ≥ pj(tij) (10)

Esij =
∑
t3tij

ϕ(t−j | tij)sj(tij , t−j) ∀j, i (11)

sj(t) =
∑
k∈N

dkj(t)pk(t) ∀j, t (12)

djj(t) = 0 ∀j, t (13)

dkj(t) + djk(t) = 1 ∀j, k, t j 6= k (14)

djk(t) ≥ 0 ∀j, k, t (15)

djk(t) + dkl(t) ≤ 1 + djl(t) ∀j, k, l, t (16)

djk(t) ∈ {0, 1} ∀j, k, t . (17)

Note that the only free variables are linear ordering variables djk(t) as well as payments πij . The
variables sj(t) and Esij for start times and expected start times, respectively, can be eliminated. The
objective (8) is the total expected payment. Constraints (9) and (10) are the individual rationality and
incentive compatibility constraints: (9) requires the expected payment to at least match the expected
cost of waiting when the type is tij , and (10) makes sure that the expected utility is maximized when
reporting truthfully. The values Esij are also referred to as an interim schedule. Indeed, Esij is the
expected start time of job j given it has (reported) type i. Observe that the number of variables djk(t)
equals n2 · |T |, which due to the size of the type space T may be exponential in the input size of the
problem.

Recall that the vertices of Q(t) are the solutions s(t) of (12)-(17). Moreover, a vector of start times s(t)
satisfies (12)-(15) if and only if s(t) ∈ Q(t); see for instance Queyranne and Schulz (1994, Thm. 4.1).
More specifically, via (12), the scheduling polytope Q(t) is an affine image of both the linear ordering
polytope (13)-(16) and its relaxation (13)-(15). This important observation is crucial for what follows,
as it allows us to work with the relaxation (13)-(15) instead of (13)-(16).

4.1 Relaxation & Compactification

A linear relaxation of the optimal mechanism design problem (8)-(17) is obtained by dropping the last
two sets of constraints (16) and (17). By moving from the ILP formulation to its LP relaxation, we
in fact move from deterministic scheduling rules to randomized ones, which follows from our previous
discussion about the equivalence of (12)-(15) and (6)-(7), as well as the fact that the scheduling polytope
Q(t) is an affine image of the relaxation (13)-(15) via (12).

In what follows we also combine (11) and (12) into just one constraint. Note that the single machine
scheduling polytope is described exactly by (12)-(15) and indeed the triangle inequality, (16), is redun-
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dant (Queyranne, 1993). This gives us the following formulation for the linear relaxation.

min
∑
j∈N

∑
tij∈Tj

ϕijπ
i
j (18)

s.t. πij ≥ wijEsij ∀j, i (19)

πij ≥ πi
′
j − wij(Esi

′
j − Esij) ∀j, i, i′, pj(ti

′
j ) ≥ pj(tij) (20)

Esij =
∑
t3tij

ϕ(t−j | tij)
∑
k∈N

dkj(t
i
j , t−j)pk(t−j) ∀j, i (21)

djj(t) = 0 ∀j, t (22)

dkj(t) + djk(t) = 1 ∀j, k, t, k 6= j (23)

dkj(t) ≥ 0 ∀j, k, t . (24)

We now focus on the projection to variables Esij , that is, vectors Es ∈ Rm that satisfy (21)-(24). These
are interim schedules in the linear relaxation. Let us refer to this projection as the relaxed interim
scheduling polytope. Notice that, even though it is a linear relaxation, (21)-(24) is still an exponential
size formulation in general, as it depends on the size of the type space T . The crucial insight is that in
the linear relaxation, this exponential size formulation is not necessary. Instead of using dkj(t) where
t ∈ T , we propose an LP compactification by restricting to variables

dkj(tj , tk) ,

where tj and tk are the types of jobs j and k, respectively. Note what this means: The variable dkj( · )
that describes the linear order of two jobs j and k in the problem formulation, now only depends on
the types tj and tk of the jobs j and k, and no longer on the whole type vector t = (t1, . . . , tn).

This restriction reduces the number of dkj-variables to O(m2), yielding a formulation of size polynomial
in m. Note that this is a polynomial size formulation. Doing so, we obtain the following formulation
for the interim schedule.

Esij =
∑
k∈N

∑
tk∈Tk

ϕ(tk | tij)dkj(tij , tk)pk(tk) ∀j, i (25)

djj(tj , tj) = 0 ∀j, tj (26)

dkj(tk, tj) + djk(tj , tk) = 1 ∀j, k, tj , tk, k 6= j (27)

dkj(tk, tj) ≥ 0 ∀j, k, tj , tk . (28)

The following lemma is the core technical insight of the main result in this paper.

Lemma 2. The relaxed interim scheduling polytope defined by (21)-(24) can be equivalently described
by (25)-(28).

Proof. Proof. Let P be the projection of (21)-(24) to variables Esij , and P ′ be the projection of (25)-
(28) to variables Esij . It is pretty straightforward to verify that if Es ∈ P ′, then Es ∈ P , simply by
letting dkj(t) := dkj(tj , tk) for all t 3 tj , tk. Here t 3 tj , tk denotes all type vectors t in which jobs j
and k have types tj and tk, respectively.

The more interesting step is to show is that if Es ∈ P , then Es ∈ P ′. So let Es ∈ P with corresponding
dkj(t). Now define

dkj(tj , tk) =
∑

t3tj ,tk

ϕ(t)

ϕ(tk, tj)
dkj(t) ,

as the weighted average of the values dkj(t) for those type vectors in which jobs j and k have types tj
and tk, respectively. Here, following earlier notation we let ϕ(tk, tj) :=

∑
t3tk,ti

ϕ(t) be the probability
of jobs k and j having types tk and tj , respectively. In the uncorrelated case, note that ϕ(tk, tj) =
ϕ(tk)ϕ(tj). In either case, the so defined values dkj(tj , tk) clearly satisfy (26)-(28). Moreover, for all
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j ∈ N and fixed tij ∈ Tj , we get

Esij =
∑
t3tij

ϕ(t−j | tij)
∑
k∈N

dkj(t)pk(t)

=
∑
t3tij

ϕ(t)

ϕ(tij)

∑
k∈N

dkj(t)pk(t)

=
∑
k∈N

∑
t3tij

ϕ(t)

ϕ(tij)
dkj(t)pk(t)

=
∑
k∈N

∑
tk∈Tk

ϕ(tk | tij)
∑

t3tk,tij

ϕ(t)

ϕ(tij)ϕ(tk | tij)
dkj(t)pk(tk)

=
∑
k∈N

∑
tk∈Tk

ϕ(tk | tij)dkj(tij , tk)pk(tk) ,

which is exactly the right hand side of (25).

We conclude with the following theorem.

Theorem 3. Computing an optimal interim schedule Es ∈ Rm together with optimal payments π ∈ Rn
for the Bayesian mechanism design problem can be done in time polynomial in the input size of the
problem by solving the compactified linear program (18)-(20), (25)-(28).

Proof. Proof. In the case of uncorrelated types, the input size of the problem is Θ(m). The linear formu-
lation (18)-(20) together with (25)-(28) has O(m2) variables and O(m2) constraints. Hence, this linear
program can be solved in time polynomial in the input size. For the correlated case, the formulation is
polynomial size, too: all we need to set up the formulation is that the O(m2) values ϕ(tk | tij) can be
computed in polynomial time.

Theorem 3 tells us that we can compute optimal payments and an interim schedule in polynomial
time. However, an important issue remains, namely the actual implementation of the mechanism, and
the question if we did not loose anything on the way by reducing the number of variables. Before we
proceed to show how the optimal LP solution can be implemented in Section 5, we briefly discuss the
LP relaxation.

4.2 The Compactification and the Constraint Matrix

We consider a relaxation of the linear ordering polytope by dropping triangle and integrality constraints.
Also, we have reduced the number of variables from a potentially exponential number to a polynomial
number. It seems that thereby we are reducing the (number of) feasible mechanisms, because the
variables dkj(tj , tk) only depend on the types of jobs j and k, while dkj(t) depends on the whole type
vector t. For deterministic mechanisms, this independence is also known as independence of irrelevant
alternatives, or iia-property.

Definition 4 (iia). A deterministic scheduling rule is independent of irrelevant alternatives or iia
if the relative order of two jobs does not depend on anything but the types of those two jobs, that is
dkj(t) = dkj(tj , tk) for all t 3 tj , tk. We call a mechanism for which the scheduling rule is iia an
iia-mechanism.

Lemma 2 shows that the compactification is no loss of generality as far as the linear relaxation is
concerned. With this in mind, a possible interpretation of Lemma 2 would be that the restriction to iia-
mechanisms can be done without loss of generality once randomization is allowed. However, we did not
define what a randomized iia-mechanism is, and this is not so straightforward. For example, it follows
from Theorem 9 below that the optimal randomized mechanism cannot be represented as a lottery
over deterministic iia-mechanisms. One reason for this is that the variables dkj in the relaxation in
general cannot be interpreted as the probability of job k preceding job j: By definition of the relaxation,
neither the vector of variables dkj(tj , tk) nor dkj(t) necessarily lie in the linear ordering polytope; see e.g.
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Fishburn (1992). Hence, the interpretation of the optimal randomized mechanism as an iia-mechanism
is problematic.

At this point it is important to realize that the restriction to iia-mechanisms is a loss of generality
for the deterministic optimal mechanism design problem (8)-(17): Duives et al. (2015) give an instance
that shows the existence of an optimality gap in general. That is, there exist instances where the
optimal deterministic iia-mechanism has higher total expected payments than the optimal deterministic
mechanism; see also Theorem 7 below.

The underlying reason for this effect can be found by studying the structure of the constraint matrix for
both problems: Recall that in the compacified linear programming relaxation, the triangle inequality,
(16), is redundant. Therefore it suffices to use inequalities (21)-(24). The resulting constraint matrix,
(21)–(24) is block diagonal, with one block for each pair of jobs and types. Furthermore, variables
djk(t) only play a role in the expected start time of jobs j and k, but no other job. Therefore it suffices
if these decision variables only depend on the types of those two jobs. While all this is true for the
linear relaxation, the triangle inequality breaks the block diagonal structure of the constraint matrix,
and therefore is necessary for the integer linear program of deterministic mechanisms. As a result, for
deterministic mechanisms, the decision variables need to be dependent on the whole type vector t, in
general.

5 Implementation of the Optimal Mechanism

As a consequence of the preceding discussion, the solution to the compactified linear programming
relaxation does not yet qualify as a solution to the Bayesian mechanism design problem, because the
interim schedule Es does not have an interpretation as a randomization over schedules. In order to
actually implement the mechanism, we therefore still need to compute, for any reported type vector t,
the corresponding (randomized) schedule s(t), so that Es = ET [s(t)]. We here show that projecting to
the space of start time vectors allows us to do that.

First, observe that for a given solution of the LP relaxation and any fixed type vector t = (t1, . . . , tn)
we have values djk(tj , tk), for each pair of jobs j and k. From these we can compute a corresponding
vector of start times s(t) by

sj(t) =
∑
k∈N

dkj(tj , tk)pk(tk) for all j ∈ J .

Now s(t) is a point in the scheduling polytope Q(t) defined in (6) and (7) and the dimension of Q(t)
is n − 1 (if there are no jobs with zero processing times, at least). It follows from Caratheodory’s
Theorem that s(t) can be expressed as the convex combination of at most n vertices of Q(t), that is,
job sequences. This will be our desired solution to the Bayesian mechanism design problem, as this
allows us to interpret the LP solution, for each reported vector of types t ∈ T , as a lottery over at most
n job sequences.

For the subsequent discussion, for notational convenience, we drop the dependence on the type vector
t. In order to compute a decomposition à la Caratheodory we use a well known approach (Grötschel
et al., 1988, Thm. 6.5.11): Given some point s ∈ Q, pick an arbitrary vertex v of Q, and compute the
point s′ ∈ Q where the half-line through v and s leaves Q. This point lies on a face(t) of Q, and we can
recurse on that face(t). We call this the GLS method. One iteration of the GLS method is illustrated
in Figure 1.

To efficiently use the GLS method, we only need a way to efficiently compute the intersection point s′

and a facet f ′ on which it lies. For general polymatroids, this can be done with an algorithm described
by Fonlupt and Skoda (2009). For the scheduling polytope, a direct application of their result leads to
an algorithm that runs in time O(n8).

But since we here deal with the single machine scheduling polytope and not with general polymatroids,
we can substantially improve on that. This improvement rests on the following theorem.

Theorem 5. Let Q be the scheduling polytope in start times induced by the vector of processing times
p ∈ Rn>0. For given x, y ∈ Rn, y 6= 0, the computation of the intersection of a line L = {x+λy | λ ∈ R}
with Q together with the facets of Q, which intersect with L, can be done in time O(n2 logn).
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f ′

v s
s′

Fig. 1. Illustration of one iteration of the GLS method. The point s is a convex combination of the vertex v and the
new point s′, which lies on a lower-dimensional face of the polytope, f ′.

The algorithm and proof of the theorem is given in Appendix B. Combined with the GLS method, for
any type vector t and the corresponding vector of start time s(t), we can therefore compute a repre-
sentation of s(t) as a convex combination of at most n job sequences in computation time O(n3 logn).

Theorem 6. A point s in the single machine scheduling polytope Q can be decomposed into the convex
combination of at most n vertices (equivalently, permutation schedules) of Q in time O(n3 logn).

Proof. Proof. Using the GLS method starting with s = s0, the line intersection algorithm computes
an intersection point s1, and at the same time a facet of the scheduling polytope Q on which this
intersection point lies. That facet is represented by some set K1 ⊂ N for which inequalities (6) are
tight. Note that these are schedules in which all jobs in K1 are processed before all jobs in N \K1. To
iterate the procedure on the lower dimensional face on which s1 lies, the next vertex v1 can be chosen as
the schedule induced by the sequence σ given by the order of the elements of s1, say s1σ(1) ≤ · · · ≤ s1σ(n).
That takes O(n logn) time. Note that, as both v1 and s1 lie on the facet defined by K1, the next
iteration must yield a facet K2 so that either K2 ⊂ K1 or K1 ⊂ K2. In other words, the algorithm
produces a sequence of nested sets. Indeed, Queyranne (1993) showed that every (n − k)-dimensional
face of Q corresponds one-to-one with an ordered partition of N into k sets, that is a tuple (N1, . . . , Nk)
with Ni∩Nj = ∅ for all i 6= j, i, j ∈ {1, . . . , k}, and

⋃k
i=1Ni = N . The interpretation is that inequalities

(6) are tight for all k nested sets Ki := N1 ∪ . . . ∪ Ni, i = 1, . . . , k. Indeed, the intersection point of
the kth iteration lies exactly on the (n − k)-dimensional face defined by the ordered partition that
is obtained from the nested sets K1, . . . ,Kk. Now since the dimension is n, and each iteration takes
O(n2 logn) time by Theorem 5, the claimed computation time follows.

We note that a point in the scheduling polytope can in fact be decomposed into a convex combination
of at most n vertices in time O(n2) using another algorithm that we recently found (Hoeksma et al.,
2014). However in contrast to what we describe here, that algorithm does not yield the intersection of
the scheduling polytope with a line. Therefore, we believe that the result presented in Theorem 5 is of
independent interest, even though a faster decomposition algorithm is possible.

6 Computational Results

We have implemented the (integer) linear programming model discussed in this paper. The main pur-
pose for the implementation was to verify a number of conjectures about the relations between im-
plementations in different equilibria, specifically Bayes-Nash versus dominant strategy, as well as the
iia-property. To that end, we generated and tested the implementations on randomly generated in-
stances, the essence of which is presented here.

6.1 Bayes-Nash and dominant strategy equilibria and the iia-property

The following two instances are an outcome of our experiments and encompass some new, theoretical
insights.

Instance 1 Four jobs with the following type spaces and corresponding probabilities:
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Job 1 w = 6 w = 7 w = 10

p = 2 0.3312 0.3456 0.0432
p = 7 0.1288 0.1344 0.0168

,

Job 2 w = 5 w = 8

p = 4 0.0344 0.8256
p = 8 0.0056 0.1344

,

Job 3 w = 3 w = 10

p = 8 0.3825 0.1275
p = 10 0.3675 0.1225

,

Job 4 w = 3 w = 8

p = 1 0.2583 0.3717
p = 6 0.1517 0.2183

.

Instance 2 Three jobs with the following type spaces and corresponding probabilities:

Job 1 w = 2

p = 1 1
,

Job 2 w = 9

p = 8 1
,

Job 3 w = 1 w = 3 w = 5

p = 5 0.24 0.02 0.16
p = 7 0.24 0.24 0.10

.

We summarize our computational experiments in the following theorems.

Theorem 7. Optimal deterministic mechanisms for either Bayes-Nash or dominant strategy imple-
mentations, in general do not satisfy the iia-condition.

Proof. Proof.Duives et al. (2015) use Instance 2 to prove this theorem for optimal Bayes-Nash mecha-
nisms. Indeed, Instance 1 shows the same: The optimal deterministic Bayes-Nash mechanism has a total
expected cost of 128.5195. When enforcing the mechanism to be iia, the total expected cost becomes
128.5697. Moreover, the optimal deterministic dominant strategy mechanism has a total expected cost
of 128.6151, while that becomes 128.6946 if the mechanism is forced to be iia.

Corollary 8. The optimal deterministic Bayes-Nash mechanism is, both in the iia and the non-iia
case, generally not implementable in dominant strategies.

Theorem 9. Randomized Bayes-Nash mechanisms perform better than deterministic Bayes-Nash mech-
anisms in terms of minimal total expected payment. In particular, a randomized Bayes-Nash implemen-
tation cannot, in general, be decomposed into the convex combination of deterministic Bayes-Nash
implementations.

Proof. Proof. Instance 2 has an optimal deterministic Bayes-Nash mechanism with total expected cost
45.0, while the optimal randomized Bayes-Nash mechanism has total expected cost 44.74625.

7 Concluding Remarks

Our solution is randomized and truthful in expectation. The computational complexity to find an opti-
mal deterministic mechanism remains open. It is not even clear if the corresponding decision problem
is in NP.

Another, interesting future path is to analyze the worst-case gaps between the different types of imple-
mentations that we studied (iia versus non-iia for example).

Moreover, it would be interesting to get qualitative information from the linear programming approach
that goes beyond the statements made in Section 6. While we believe it is interesting to get polyhedral
explanations for phenomena in the design of mechanisms, along the lines of Section 4.2, it could also
work the other way around. Namely, one might be able to derive qualitative properties of mechanisms
via structural properties of the underlying mathematical programs.
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Nucleus Information and Coordination in Networks ICM/FIC RC130003. An extended abstract with
parts of this paper appeared in the proceedings of IPCO 2013 (Hoeksma and Uetz, 2013).
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A When Processing Times Don’t Matter

In none of the technical proofs of the paper it was actually necessary that the reported processing times
are at least as large as the true processing times. Here we address the case where this is allowed. The
first thing to note is that once this requirement is relaxed, there is a flaw in the model that needs to
be fixed. Namely, if a job would do this, we cannot ensure that the proposed allocation is feasible in
the sense that each job receives the required processing: The mechanism designer would not even know
the true required processing of any job. As already explained in Section 3.1, the natural adaptation
of the model if jobs are also allowed to report smaller than true processing times would be to assume
that jobs just receive the amount of processing they claim. This boils down to saying that the utility
of a job does not depend on the allocated processing, as long as it is at least as large as the claimed
processing time.
In this section we show that for this model, the optimal Bayesian mechanism is very simple. Indeed, we
will show how the problem reduces to a single-dimensional mechanism design problem, which then boils
down to the stochastic single machine scheduling problem. The latter can be solved by the stochastic
version of Smith’s rule, namely to process the jobs in non-increasing order of (virtual) weight over
expected processing time. The optimality of that version of Smith’s rule in the stochastic single machine
setting is well known (Rothkopf, 1966).
In order to describe the optimal mechanism for this case we need to recall some of the definitions of
Duives et al. (2015). For each job j, we compute virtual weights as follows. Let Wj and Pj denote all
the weights and processing times, respectively, of job j in all type vectors t1j , . . . , t

mj

j . For notational

convenience assume the different weights are indexed according to w1
j ≤ · · · ≤ w

mj

j . Then the virtual

weights are w1
j := w1

j and

wij := wij + (wij − wi−1
j )

∑i−1
k=1 ϕ(wkj )

ϕj(wij)
for i = 2, . . . ,mj ,

where ϕ(wij) :=
∑
t3wi

j
ϕ(t) denotes the probability that job j has a type with weight wij . Moreover,

for some fixed weight wij ∈Wj , denote by Pj(w
i
j) ⊆ Pj the processing times of job j conditioned on the

weight being wij . Here, the intended meaning is that Pj(w
i
j) are the processing times in job j’s types

of the form tij = (wij , · ) ∈ Tj . Then let

Epj(w
i
j) :=

∑
pj∈Pj(w

i
j)
ϕ(wij , pj)pj

ϕ(wij)

be the expected processing time of a job j conditioned on its weight being wij .
Now, suppose the jobs report types ti1, . . . , t

i
n with weights wi1, . . . , w

i
n. Then we claim that the optimal

Bayesian mechanism is ordering the jobs non-increasing in the ratio of virtual weight over expected
(conditional) processing time,

wij
Epj(wij)

.

The corresponding minimal payment scheme that implements this scheduling rule can be efficiently
computed by shortest path computations in the underlying type graphs, as has been shown by Duives
et al. (2015, Lemma 1).
Note that reporting only weights would be sufficient since both the expected processing time and the
virtual weights do not depend on the actual (reported) processing time.

Theorem 10. The Bayesian mechanism design problem where agents are allowed to report smaller
than true processing times has an optimal solution where the scheduling rule is to sequence the jobs in
non-increasing ratios of virtual weight wij over (conditional) expected processing time Epj(w

i
j).

Proof. Proof. Say (Es, π) is the interim schedule and payment scheme of an optimal Bayesian mecha-
nism. Abusing notation a little bit, let us denote by k and ` two types of a job j so that tkj = (wij , p

k
j )

and t`j = (wij , p
`
j). That is, k and ` denote two types of a job j with the same weight wij but with

different processing times. We have by incentive compatibility that

πkj − wijEskj ≥ π`j − wijEs`j for all such tkj , t
`
j ∈ Tj .
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Since this inequality holds also with k and ` exchanged, we conclude

πkj − wijEskj = π`j − wijEs`j for all such tkj , t
`
j ∈ Tj .

In other words, Bayes-Nash incentive compatibility implies that a job j receives the same expected
utility for a given reported weight wij , irrespective of the reported processing time. Note that this is
not necessarily the case once we forbid reporting a smaller than true processing time, since then only
one of the two inequalities is present.
But we can even say more, namely, we next argue that in the optimal mechanism, even the expected
start time is independent of the reported processing time. To that end, we take a look at the payments.
Consider the Bayes-Nash incentive compatibility constraints between types with different weights. We
know that an implementable scheduling rule must satisfy monotonicity with respect to weights. This
follows from Theorem 1, which continues to hold also for the problem where jobs may understate their
true processing time. (This is not difficult to see when considering the underlying type graphs.) In
particular it therefore holds that

min
pj∈Pj(w

i
j)
Esj(w

i
j , pj) ≥ max

pj∈Pj(w
k
j )
Esj(w

k
j , pj) ∀wij < wkj . (29)

In words, a larger weight always yields a smaller expected start time, and this is true irrespective of
the reported processing time.
We next want to express minimal payments for any given implementable scheduling rule. To that end,
recall from Duives et al. (2015) that, for any implementable scheduling rule, the minimal payment for
reporting type tij = (wij , p

i
j) can be computed by a shortest path calculation in the type graph. To

keep the presentation brief, we refer to (Duives et al., 2015) for further details and conclude that the
incentive compatible payments fulfill the following set of inequalities, and the minimal payment for
reporting type (wij , p

i
j) is exactly obtained by the maximum of the right hand side in

πj(w
i
j , p

i
j) ≥

mj−1∑
k=i

wkj

(
Esj(w

k
j , p

k
j )− Esj(wk+1

j , pk+1
j )

)+ w
mj

j Esj(w
mj

j , p
mj

j ) . (30)

Here, the sequence of non-decreasing weights wij ≤ wi+1
j ≤ · · · ≤ w

mj

j is fixed and exhaustive. Indeed,
for the problem considered here the only flexibility in expression (30) lies in choosing, for each k > i,
some pkj ∈ Pj(wkj ). (This exactly corresponds to choosing different paths in the type graph.)
Now observe that each term Esj(w

k
j , p

k
j ) appears in (30) with as coefficient (wkj −wk−1

j )Esj(w
k
j , p

k
j ) ≥ 0

and hence the maximum in the right hand side of (30) is attained when, for all k > i, pkj equals

pkj = arg max
pj∈Pj(w

k
j )

Esj(w
k
j , pj) .

Therefore the payments of the optimal Bayesian mechanism are minimal whenever the expression
maxpj∈Pj(w

k
j )Esj(w

k
j , pj) is minimal, for each weight wkj . Here, note that the feasibility of this inde-

pendent choice for each k is guaranteed by (29). However this means that the mechanism is optimal only
if Esj(w

k
j , pj) is the same for all pj ∈ Pj(wkj ). In other words, for each fixed weight wkj the mechanism

assigns the same expected start times for all pj ∈ Pj(wkj ), and by incentive compatibility also the same
payment for all pj ∈ Pj(wkj ).
This means that, for given weight wij the (expected) start time of a job must be independent of its
actual processing time. Therefore, the expected completion time of a job with weight wij equals

Esj(w
i
j) + Epj(w

i
j) .

In other words, we are effectively left with a single-parameter Bayesian mechanism design problem,
where the processing time for a job with weight wij equals Epj(w

i
j).

Hence with no loss of generality we can define a scheduling rule and payment rule that only depends on
the vector of reported weights of the jobs. We can now use (30), together with the definition of virtual
weights given above, to write the minimal total expected payment of any implementable scheduling
rule as ∑

j∈J

∑
wj∈Wj

ϕ(wj)wjEsj(wj) .
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For a formal proof of the latter, refer to the appendix of Duives et al. (2015), where we only need to
replace processing times pj by expected (conditional) processing times Epj(w

i
j). Now we have∑

j∈J

∑
wj∈Wj

ϕ(wj)wjEsj(wj) =
∑
j∈J

∑
wj∈Wj

∑
w3wj

ϕ(w)wjEsj(wj) =
∑
w∈W

ϕ(w)
∑
j∈J

wjEsj(wj) , (31)

where w = (w1, . . . , wn) denotes a vector of weights for all jobs, and W is the type space of all weight
profiles. Therefore, conditioned on a given vector of reported weights w = (w1, . . . , wn), the term∑
j∈J wjEsj(wj) that appears in the right hand side of (31) is minimized by sequencing the jobs in

the order of virtual weight wj over conditional expected processing times Epj(wj). Given that we are
not allowed to make the sequencing dependent on the actual reported processing times, this is indeed
the best we can do, and optimality of this sequencing rule follows from a paper by Rothkopf (1966) on
sequencing with random service times.
We finally note that the final argument implicitly requires the ratios wj/Epj(wj) to be monotonically
increasing in wj , as otherwise the scheduling rule is not monotone and thus not implementable. This
technical issue, however, is well known to be fixable by a standard procedure known as ironing. We do
not go into the technical details here, but refer to Myerson (1981) or Vohra (2011).

B An O(n2 log n) Line Intersection Algorithm

We here give the proof of Theorem 5. First we give a simple argument that immediately leads to an
O(n4) time bound. To start with, we (re)state a lemma that directly follows from Queyranne (1993);
it shows that the separation problem for the scheduling polytope can in fact be solved by sorting. For
convenience of notation let us define

g(K) :=
1

2

(∑
j∈K

pj

)2

− 1

2

∑
j∈K

pj
2

to be the right-hand-side of (6).

Lemma 11. Let s be a given vector sorted such that s1 ≤ s2 ≤ . . . ≤ sn. Then s ∈ Q if and only if∑
j∈N pjsj = g(N) and

∑
j∈K pjsj ≥ g(K) holds for all K = {1, . . . , k}, k = 1, . . . , n. In particular, if

there is a set K ⊆ N that violates (6), then there is a k ∈ {1, . . . , n} such that the set K = {1, . . . , k}
also violates (6).

We give the proof for the sake of completeness.

Proof. Proof. Let

Γ (K) := g(K)−
∑
j∈K

pjsj

be the function that measures the violation of (6). Queyranne shows that for given s, if K ⊆ N
maximizes the violation Γ (K) then l /∈ K if and only if sl ≥

∑
j∈K pj (Queyranne, 1993, Lem. 5.2).

Suppose K is a set that maximizes Γ (K). Choose k such that sk <
∑
j∈K pj and sk+1 ≥

∑
j∈K pj .

Then j ∈ K for all j ∈ {1, . . . , k} and j /∈ K for all j ∈ {k + 1, . . . , n}, so K = {1, . . . , k}. Therefore
if there is a set that violates (6), i.e. Γ (K) > 0, then there is an index k such that the set {1, . . . , k}
maximizes that violation and thus also violates (6).

We next describe an algorithm that computes the point where a half-line from x ∈ Q in direction
y ∈ Rn, L = {x+ λy | λ ∈ R≥0} leaves the scheduling polytope Q. We also define `(λ) := x+ λy and
assume y 6= 0. The simple idea is this: The facet through which the half-line L leaves polytope Q is
given by some subset K so that (6) ceases to be valid while moving along L in direction y. So we can
enumerate all candidates for such K, and exploit the fact that, by Lemma 11, for given ` = `(λ) all
candidate sets are among the nested sets {σ(1), . . . σ(k)}, k = 1, . . . , n, where σ is the induced order of
indices such that `σ(1) ≤ · · · ≤ `σ(n). This results in an efficient algorithm, as on L, there are in total
at most O(n2) induced orders σ of the components of `(λ).

Lemma 12. The vectors `(λ) on the line L have at most O(n2) different induced orders σ of their
components.
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Proof. Proof. The relative order of `(λ)i and `(λ)j can change at most once, as L is a line.

By Lemma 12 we have no more than O(n2) induced orders on half-line L and it is not hard to see that
they can all be computed in O(n3) total time. These O(n2) orders give rise to no more than O(n3)
candidate sets K for the facet through which the half-line L leaves Q. We can compute the intersection
of the facet induced by K with half-line L in time O(n), and hence for any two candidates we can
decide in time O(n) which of the two intersections is closer to the given point x ∈ Q. By this line of
argument we get an O(n4) time bound for computing a facet on which the half-line L leaves polytope
Q. A slightly more clever bookkeeping, however, allows to obtain a better computation time.

The idea in improving the computation time is as follows. The relative order of `(λ)i and `(λ)j on L
can change at most once for each pair of components i and j. For each such pair i, j with yi 6= yj this
order changes exactly when the components have equal value, i.e. at the point `(λ(i, j)), where

λ(i, j) =
xi − xj
yj − yi

.

For any pair i, j with yi = yj the relative order of i and j is the same over the whole line L.

These points divide L into intervals I on which there is a single induced order σ of the components
of the vectors ` ∈ I. This not only bounds the number of induced orders by O(n2), it also bounds
the total number of distinct nested sets K = {σ(1), . . . σ(k)}, k = 1, . . . , n, for all induced orders σ,
by O(n2). This is because at `(λ(i, j)) only the relative order of i and j changes. If multiple pairs of
components change relative orders in the same point `(λ), we can treat these separately in the analysis
to obtain the same result. This means that i and j are consecutive in the induced orders of the two
intervals incident with the point `(λ(i, j)). Therefore all induced nested sets K for these two intervals
are identical, except for the ones containing i and j.

Each of these induced nested sets K gives rise to one inequality (6) and for each such set K, for
which

∑
j∈K pjyj 6= 0, the line L intersects the facet defined by (6) for K. Let us denote by δ(K) the

parameter so that `(δ(K)) is exactly this intersection point, and note that δ(K) can be easily computed
if L and K are given. (Note that, if

∑
j∈K pjyj = 0 then the line L and the hyperplane induced by

(6) for K are affinely dependent, and there is no intersection.) The values δ(K) can now be divided
into two sets: those for which q ≥ δ(K) for any `(q) ∈ L ∩ Q and those for which q ≤ δ(K) for any
`(q) ∈ L ∩ Q. These provide lower bounds and upper bounds (on the line L) for the intersection of
L and Q, respectively. The largest lower bound, denoted δ, and the smallest upper bound, denoted δ,
exactly yield the intersection of L with Q.

To see why, note that for every `(λ) with δ ≤ λ ≤ δ, (6) holds for all K that are induced nested sets of
vector `(λ). Therefore we have from Lemma 11 that `(λ) ∈ Q and `(λ) ∈ L by definition. Also, for any
`(λ) with λ > δ = δ(K) for some nested set K, (6) is violated for K and thus `(λ) /∈ Q. Likewise for
any `(λ) with λ < δ, we have `(λ) /∈ Q.

The idea is now to compute δ and δ, together with the corresponding facet inducing nested sets K, by
‘moving’ along L in the order of sorted values λ(i, j), and updating the nested sets K, and all other
necessary parameters, incrementally.

The formal proof of the theorem is given along the lines of Algorithm 1, which gives the pseudocode
for computing the intersection of a line L with the scheduling polytope Q.

Proof. Proof of Theorem 5. We annotate the pseudocode in Algorithm 1 and thereby derive the bound
on the computation time. In line 3, the values δ and δ, as well as L and K are initialized. L is the list
of parameters λ(i, j) on which the induced orders of `(λ) change, and K is a container that contains
all necessary information needed for the nested sets K and incremental updating in the course of the
algorithm. The computation time of this initialization is O(1).

In lines 4 to 9 the values λ(i, j) are computed and added to L. In line 10, L is sorted in ascending
order. Since there are at most n(n− 1)/2 of these values, the sorting can be done in time O(n2 logn).

In line 11, λ0 is set to the smallest λ(i, j) and in line 12 σ is set to be the order of `(λ0 − 1). This
corresponds to the order of all `(λ) with λ < λ0. It can be computed in time O(n logn). Note that, if
σ is stored as two arrays, one for σ(·) and one for σ−1(·), calling either one requires time O(1).

In lines 13 to 19 all nested subsets K(j) that are induced by σ are stored in K together with the
values P (K(j)), F (K(j)) and Y (K(j)). Note that F (K(j)) − λY (K(j)) is exactly equal to Γ (K(j))
for the point `(λ). Therefore Γ (K(j)) = 0 for `(δ(K(j))). Computing the values P (K(j)), F (K(j))
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and Y (K(j)) is done incrementally in time O(1). Since there are at most O(n) nested subsets K(j),
computing all of them can be done in time O(n).
In line 21 δ(K) is computed such that Γ (K) = 0 for `(δ(K)) and the if clause on line 22 determines if
(6) for K is satisfied by points `(λ) for λ > δ(K), or by points `(λ) for λ < δ(K). In the former case,
δ(K) is an upper bound. In the latter case, δ(K) is a lower bound, which is then updated accordingly
in lines 23 or 25. All steps can be performed in time O(1), there are O(1) computations per subset K
and there are O(n) subsets, therefore all computations can be done in time O(n).
In lines 28 to 50 for each λ(i, j) in ascending order we first determine how the order will change, i.e.,
whether i was before j or the other way around. Assume the former case, the latter case is symmetric.
Then K is the σ−i-th induced subset of σ, i.e. the subset containing i but not j. K′ is computed
as the new induced subset and P (K′), F (K′) and Y (K′) as the corresponding values. These replace
(K,P (K), F (K), Y (K)) in K, while i and j are switched in σ. Then the value δ(K′) is computed and
it is again determined if the upper or the lower bound has to be updated and this is done accordingly.
Again each step can be performed in time O(1) and there are O(1) computations per iteration. There
are O(n2) iterations, therefore all computation can be done in time O(n2).
If the returned values satisfy δ < δ, then the intersection of Q and L is empty. Otherwise the interval
between `(δ) and `(δ) is the intersection of Q and L.
The computation time of the algorithm is dominated by the sorting of the O(n2) values λ(i, j) in line
10. So the total computation time of the algorithm is O(n2 logn). We find the facets at which the line
L and the scheduling polytope Q intersect by repeating lines 13 to 19 for δ and δ.
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Algorithm 1: Line Intersection Algorithm
Input : processing time vector p ∈ Rn>0, vectors x ∈ Rn and y ∈ Rn, y 6= 0.
Output: values δ and δ.
δ := −∞, δ :=∞, L := [ ], K := [ ].
for i = 1 to n do

5: for j = 1 to i− 1 and yj 6= yi do
λ(i, j) := (xi − xj)/(yj − yi)
L := L+ [((i, j), λ(i, j))]

end for
end for

10: Sort L increasing in λ(i, j)
λ0 := λ(i, j) of first element of L
σ := order of `(λ0 − 1)
for j = 1 to n do
K(j) := {σ(1), . . . , σ(j)}

15: P (K(j)) := P (K(j − 1)) + pj
F (K(j)) := F (K(j − 1)) + P (K(J − 1))pj − pjxj
Y (K(j)) := Y (K(j − 1)) + pjyj
K := K+ [(K(j), P (K(j)), F (K(j)), Y (K(j)))]

end for
20: for K ∈ K and Y (K) 6= 0 do

δ(K) := F (K)
Y (K)

if F (K)− (δ(K) + 1)Y (K) > 0 then
δ := min{δ, δ(K)}

else
25: δ := max{δ, δ(K)}

end if
end for
for (λ(i, j), (i, j)) ∈ L do

if σ−1(i) < σ−1(j): then
30: K := σ−1(i)-th element in K

K′ := K \ {i} ∪ {j}
P (K′) := P (K)− pi + pj
F (K′) := F (K)− ( 1

2
P (K)− 1

2
p2i − pixi) + ( 1

2
P (K′)− 1

2
p2j − pjxj)

Y (K′) := Y (K)− piyi + pjyj
35: else

K := σ−1(j)-th element in K
K′ := K \ {j} ∪ {i}
P (K′) := P (K)− pj + pi
F (K′) := F (K)− ( 1

2
P (K)− 1

2
p2j − pjxj) + ( 1

2
P (K′)− 1

2
p2i − pixi)

40: Y (K′) := Y (K)− pjyj + piyi
end if
Replace (K,P (K), F (K), Y (K)) in K by (K′, P (K′), F (K′), Y (K′))
Switch i and j in the order σ

δ(K′) := F (K′)
Y (K′)

45: if F (K′)− (δ(K′) + 1)Y (K′) > 0 then
δ := min{δ, δ(K′)}

else
δ := max{δ, δ(K′)}

end if
50: end for

return δ, δ
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É. Tardos, V. Vazirani, eds., Algorithmic Game Theory , chap. 9. Cambridge University Press, 209–
242.

Queyranne, M. 1993. Structure of a simple scheduling polyhedron. Math. Programming 58(1-3) 263–
285.



Queyranne, M., A. S. Schulz. 1994. Polyhedral approaches to machine scheduling. Technical Report
408/1994, TU Berlin.

Rothkopf, M. H. 1966. Scheduling with random service times. Management Science 12 703–713.
Sandholm, T. 2003. Automated mechanism design: A new application area for search algorithms.

F. Rossi, ed., Principles and Practice of Constraint Programming (CP 2003), Lecture Notes in Com-
puter Science, vol. 2833. Springer, 19–36.

Smith, W. E. 1956. Various optimizers for single-stage production. Naval Research Logistics Quarterly
3(1-2) 59–66.

Vohra, R. V. 2011. Mechanism Design - A Linear Programming Approach. Econometric Society
Monographs, Cambridge University Press.

Vohra, R. V. 2012. Optimization and mechanism design. Mathematical Programming 134(1) 283–303.
Yasutake, S., K. Hatano, S. Kijima, E. Takimoto, M. Takeda. 2011. Online linear optimization over

permutations. T. Asano, S.-I. Nakano, Y. Okamoto, O. Watanabe, eds., Algorithms and Computation
(ISAAC 2011), Lecture Notes in Computer Science, vol. 7074. Springer, 534–543.

19


