
Master Thesis

Price of Anarchy for Machine
Scheduling Games with Sum of
Completion Times Objective

Ruben Hoeksma

Graduation Committee:
prof.dr. M.J. Uetz
prof.dr. J.L. Hurink
dr. B. Manthey

October 26, 2010





Voor Nan





Preface

This master thesis is the final result of my research on the price of anarchy for
uniformly related machine scheduling with sum of completion times objective.
The research was done at the chair of Discrete Mathematics and Mathematical
Programming at the University of Twente. I would like to use this opportunity
to thank the people who supported me during the research for and the writing
of this thesis.

First of all I want to thank Marc Uetz for introducing me to the realm of algo-
rithmic game theory and, especially, for coming up with the research topic of this
thesis. Also many thanks for the constructive criticism and useful deliberations.

I would also like to thank the rest of the staff and the master and Ph.D. stu-
dents from the chair of Discrete Mathematics and Mathematical Programming
for a good working environment and interesting discussions when we were not
working.

Finally, I am very grateful to my family and my friends who supported me
during my whole study and, especially, while I was working on this thesis.

Ruben Hoeksma
Enschede, October 2010

v





Abstract

The uniformly related machine scheduling model with sum of completion times
objective is well known and its optimal solution is easy to find. However, this
solution requires a central administrator that schedules the jobs on the machines.
We look at this model from a game theoretical point of view and introduce for
each job a selfish agent, which chooses the machine which processes the job,
and is only interested in minimizing the completion time of its own job. Our
interest lies in the price of anarchy for this game. That is, the ratio between
the objective value of the optimal solution and the objective value of the Nash
equilibrium of the game.

Recent work has shown that for the more general unrelated machine scheduling
model, with the same objective, the price of anarchy is at least 3 and at most
4. For the uniformly related machine scheduling game, with only two machines
we prove an upper bound on the price of anarchy of 1

2 + 1
2

√
5 ≈ 1.6180. We also

construct an instance which has price of anarchy equal to 3
2 ·

2+
√
3

3+
√
3
≈ 1.1830.

For the general case with any number of machines we show an upper bound of
3. Furthermore, we construct a set of instances, which price of anarchy can be
made arbitrarily close to e

e−1 ≈ 1.5820.





Contents

1 Introduction 1

1.1 Machine scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Scheduling games . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The problem setting 7

2.1 Uniformly related machine scheduling . . . . . . . . . . . . . . . 7

2.2 Single machine model . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Optimal solution algorithm . . . . . . . . . . . . . . . . . . . . . 9

2.4 The scheduling game . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Equilibrium solution algorithm . . . . . . . . . . . . . . . . . . . 12

2.6 Robust price of anarchy . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Instances with large price of anarchy 17

3.1 Reducing the set of instances . . . . . . . . . . . . . . . . . . . . 17

3.2 Simple instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Instances with all jobs on the fastest machine in equilibrium . . . 23

4 Upper bounds on the price of anarchy 29

4.1 Known bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Unit speeds and unit lengths . . . . . . . . . . . . . . . . . . . . 29

4.3 Upper bounds on the price of anarchy for the Q||
∑
Cj game . . 33

5 Concluding remarks 43

A Used notation 45

ix



x Contents

B Proofs of analysis steps 47

C Q||
∑
Cj is (2, 12 )-smooth 49

Bibliography 52



Chapter 1

Introduction

In many classical applications of optimization problems it suffices to know the
choices that should be made to get a desirable outcome. When these choices
are known a single administrator of the system simply implements these choices
and the desirable outcome follows. But, with recent developments in computer
science, especially with respect to the Internet, many situations arise in which
not a single administrator makes all choices, but many individual, selfishly act-
ing, agents make their own choices. The following fictitious example illustrates
a problem in which such a single administrator may not exist.

Example 1.1. Consider a university with a number of copy shops. Every copy
shop has a printer which can print any print job, but some of the machines are
old and therefore less fast. Several students want to print their report in one of
the shops. If they supply their files today their work will be printed the next day.
Some reports are very long and cumbersome, some are brief and to the point.
Every student wants his or her report printed as soon as possible.

The students may ask one representative to schedule all the print jobs to the
copy shops in such a way that the total waiting time is minimal. Or they may
choose to, each on their own, send their files to one of the copy shops to have
them printed.

While in this example the introduction of a single administrator would be fairly
easy, in general this may not be the case. With this in mind, an interesting
question is if the lack of such an administrator will lead to worse solutions.
Especially, we would like to be able to quantify how much the solution would
possibly get worse, when a such a single administrator is missing. A measure
used for this is the price of anarchy. In this thesis we analyze the price of
anarchy for the, fairly simple, uniformly related machine schedule game, with
sum of completion times as objective function.

In this first chapter, we give a short introduction into general machine schedul-
ing, scheduling games and the principle of the price of anarchy. In section 1.3
we give a short outline of the rest of the thesis.

1



2 1.1. Machine scheduling

1.1 Machine scheduling

The students of example 1.1 want to minimize their total waiting time. When
they ask one representative to try and achieve this, the problem can be modeled
by the machine scheduling model known as uniformly related machine scheduling
model.

The uniformly related machine scheduling model is a classical machine schedul-
ing model. In general a machine scheduling model treats n jobs that have to be
scheduled on m machines. For every combination of a job j and a machine i,
pij is the time it takes to process job j on machine i. In other words pij is the
jobs processing time on machine i.

Throughout the years many different scheduling models have been studied. Most
of these models have some properties in common, which makes a general no-
tation useful. The most commonly used notation is that of Graham, Lawler,
Lenstra and Rinnooy Kan, described in [GLLRK79]. The notation characterizes
a machine scheduling model by three parts. Namely, the machine environment,
the job properties and the objective of the schedule. For each of these parts a
separate field is used. The notation is of the form α|β|γ. The α-field for the
machine environment, the β-field for properties of the jobs and the γ-field for
the objective function.

To give some notion of the many different possible scheduling models, some of
the possibilities for each of the fields are given below.

1.1.1 α-field

The α-field contains the machine environment. It specifies the machines on
which the jobs have to be scheduled. There may be just a single machine,
denoted by a 1, or there may be more. The identical parallel machine model
has multiple machines, each with equal speed. Identical parallel machines are
denoted by a P . A parallel machine model with a specific number of machines
m is denoted by Pm.

A first expansion of the identical parallel machine model leads to uniformly
related machines1. It is denoted by a Q in the α-field. The uniformly related
machine model has multiple machines, each with its own speed si. With each
job j having a fixed length pj , the processing time of job j on machine i then is
pij = pj/si.

The unrelated machine model is denoted by an R in the first field. It may
be seen as an expansion of the uniformly related machine model. Within the
unrelated machine model no constraints exist on the pij ’s. For any pair i, j, pij
may have any value. A consequence of this is, that, a general order of the jobs
on processing time is not possible.

Of course many other machine configurations are possible. For instance, all of
the above considered machine configurations are single stage problems, whereas

1Exact naming of the models varies a lot per publication. Throughout this thesis, we use
the naming from this section.



Chapter 1. Introduction 3

also multi stage models exist. However for this thesis the single, parallel, uni-
formly related and unrelated machine models are the most relevant. They relate
to each other as

1 ⊆ P ⊆ Q ⊆ R.

1.1.2 β-field

Properties of jobs are very diverse in nature and many combinations of proper-
ties are possible. Some of the most common possibilities are treated here.

If the β-field is empty, the jobs have to be processed as a whole, one at a time
per machine. Other possible properties of the jobs are:

pij = 1, p ≤ pij ≤ p The processing times of the jobs are limited to unit pro-
cessing times (pij = 1) or by an upper and lower bound (p ≤ pij ≤ p).

pmtn The jobs can be preempted, meaning that an unfinished job can be set
aside, to process another job, and finished later from the point it was
preempted.

prec, tree The order in which the jobs have to be processed is restricted. The
restrictions specify orders between pairs of jobs and can be of arbitrary
form (prec), or of a specified form, like a tree (tree).

rj Jobs have release dates before which the job cannot be processed.

dj Jobs have due dates, which specify the time the job should be finished.

Most of the models we study in this thesis have no specific job properties.

1.1.3 γ-field

In general an objective function for a scheduling problem quantifies, in some
way, the time it takes the schedule to finish the jobs. The lower the value of the
objective function or objective value, the better the schedule is. For each goal,
different measures are best suitable. Looking at one job j, an obvious measure
is the completion time (Cj). Also the lateness and tardiness of j, defined as
Lj = Cj − dj and Tj = max(0, Cj − dj), are obvious choices when dealing with
jobs with due dates. A last measure is the unit penalty, where

Uj =

{
1 if Cj ≤ dj ,
0 otherwise.

Common objective functions are maximum completion time (makespan), Cmax,
and maximum lateness, Lmax, as well as the sum of completion times (

∑
Cj),

the sum of tardiness (
∑
Tj) and the summed unit penalty (

∑
Uj). Sometimes

weights are used to express that some jobs have higher priority than others. In
that case weighted versions of any objective may be used. For example, weighted
sum of completion times is denoted as

∑
wjCj . In this thesis our attention goes

to scheduling models with either weighted of non-weighted sum of completion
times objective.



4 1.2. Scheduling games

1.2 Scheduling games

When the students of example 1.1, instead of letting one person decide the
whole schedule, each choose their own copy shop to print their report, they get
into a mutual struggle for the best completion time. The traditional scheduling
problem now becomes a game between the students. A game in which every
student tries to optimize his own goal.

In a scheduling game each job has its own agent, which chooses the machine
which will process the job. The choice of an agent is referred to as its strategy. A
combination of strategies played by all players is called a strategy profile. Such
a strategy profile determines the completion times for each of the jobs. The
goal of each agent is minimizing the completion time of the job it represents.
The machines on which the jobs are scheduled all use some local rule, which
determine the order in which the jobs are processed on that machine. It is
common for each machine to use the same rule, but this does not have to be
the case. Note that for some models this need not imply that the order of the
jobs is the same on each machine.

1.2.1 Nash equilibrium

The Nash equilibrium is a widely accepted solution concept for competitive
games. It was first suggested by John Nash in [Nas50] and later named after him.
The Nash equilibrium concept assumes complete selfishness and no cooperation
between the players. A Nash equilibrium is defined as a solution in which no
player can improve his utility by changing only his own strategy.

Definition 1 (Nash equilibrium). Let Sj be the set of all possible strategies of
player j and let S = S1×S2× . . .×Sn be the set of all possible strategy profiles.
Then a strategy profile ν = (νj , ν−j), where νj is the strategy of player j and
ν−j the strategy profile of all players except j, is a Nash equilibrium if

uj(νj , ν−j) ≥ uj(ν′j , ν−j) ∀ν′j ∈ Sj , ∀j ∈ J, (1.1)

where uj(ν) is the utility function of player j. Also, νj is called a best response
strategy for j.

We illustrate the concept of a Nash equilibrium with the following example.

Example 1.2 (Prisoners dilemma). Consider two suspects of a crime, who both
face jail time. Both have an equal amount of small crimes, which they certainly
will be convicted for. Also, they have participated together in a larger crime for
which the public prosecutor will not get a conviction unless one of the suspects
tells on the other. So the public prosecutor tells them both that if one tells on
his mate he will get two years less jail time on the smaller crimes.

Now for the smaller crimes the suspects will get 3 years of jail and, for the larger
crime they can get 5 years of jail. So if no one tells on the other, both will be
in jail for 3 years. However if one tells on the other, and does not get told on



Chapter 1. Introduction 5

himself, he gets 1 year of jail and the other gets 8 years of jail. Finally, when
they both tell on each other, they will both spend the next 6 years in prison.

2 tells on 1 2 does not tell on 1

1 tells on 2 (6 years, 6 years) (1 year, 8 years)
1 does not tell on 2 (8 years, 1 year) (3 years, 3 years)

Table 1.1: Prisoners dilemma: You should always betray your mate.

Table 1.1 shows in overview the results of the four combinations of choices that
the prisoners, in example 1.2, have. It is easy to see that both prisoners will
get the lowest sentence, if they tell on the other person, whether or not they
themselves get told on. We see that, in the situation where both tell on each
other, neither of the suspects can improve his outcome by not telling on the
other person. So this situation is in fact a Nash equilibrium. However it is
easy to see that both prisoners are better off when they keep their mouths shut
and go to jail for 3 years. This notion raises the question of how bad a Nash
equilibrium can be, compared to the optimal solution. To measure this we use
the price of anarchy.

1.2.2 Price of anarchy

While in regular games the only interest of an individual is his own objective, we
would like to compare the outcome of a scheduling game to the optimal solution
of the corresponding machine scheduling problem. For this we look at a social
objective of the game, which here corresponds to the objective function of the
scheduling problem. Then the value of this social objective in an equilibrium
solution can be compared to the optimal value of the scheduling problem. In
[Pap01], Papadimitriou proposed the price of anarchy as a measure for this
comparison. The price of anarchy is the ratio between the objective values in
the equilibrium solution with the highest social objective value and the optimal
solution to the scheduling problem.

Definition 2 (Price of Anarchy). The price of anarchy (POA) of a game, G, is
the maximal ratio between the equilibrium solution with the highest objective
value (NE(I)) and the optimal solution (OPT(I)) of an instance from G.

POA(G) = max
I∈G

NE(I)

OPT(I)
(1.2)

We further on refer to the Nash equilibrium that attains (1.2) as the (worst)
equilibrium solution.

To illustrate the concept of the price of anarchy we look at Example 1.2. We
have already seen that the two suspects will both get a 6 year sentence, when
they pursue their own objective. If the two could reach an understanding and
do not tell on each other they would both get a 3 year sentence. So, if the social
objective is the total jail time they serve together, the price of anarchy of this
game is 2.



6 1.3. Outline of the thesis

The price of anarchy has been studied for several types of scheduling games.
Most of which were models concerning the makespan objective, see for example
[ILMS09]. For the sum of completion times objective the price of anarchy has
been studied far less. Furthermore the sum of completion times objective is the
so called utilitarian objective, the function that maximizes the total welfare of
all players.

1.3 Outline of the thesis

The remainder of this thesis consists of four chapters. In Chapter 2 we treat
the exact problem description. We define the machine scheduling model and the
scheduling game based on it. We also give the two algorithms that obtain the
optimal and the equilibrium solution, together with proofs for their correctness.
In the last two sections of Chapter 2 we treat some related work that has already
been done.

The results are divided over chapters 3 and 4. In Chapter 3 we start by providing
properties of instances with high price of anarchy. Then we show several sets of
instances for which we compute the price of anarchy, concluding with the first
main result, a set of instances which establish a lower bound on the price of
anarchy of e

e−1 ≈ 1.5820. In Chapter 4 then, we start by giving proofs that the
price of anarchy for both P ||

∑
Cj and Q|pj = 1|

∑
Cj is equal to 1. After this

we give several different approaches on how to find upper bounds for the price
of anarchy and we prove an upper bound of 3 for the general Q||

∑
Cj model.

Chapter 5 summarizes the results and gives some remarks on possible future
research.



Chapter 2

The problem setting

2.1 Uniformly related machine scheduling

The subject of this thesis is the uniformly related machine scheduling model
with sum of completion times objective. In the notation of Graham et al.
([GLLRK79]) the model is denoted by Q||

∑
Cj .

The model considers n jobs, which have to be processed on m machines. Each
job j has a length, pj , representing the amount of work that has to be done to
finish the job. The jobs are indexed, 1, . . . , n, such that p1 ≤ . . . ≤ pn. The
set of all jobs is denoted by J . Each machine i can process a certain amount of
work per unit of time, represented by its speed, si. The machines are indexed,
1, . . . ,m, such that s1 ≤ . . . ≤ sm. The set of all machines is denoted by M .

The processing time of a job j on a machine i is the length of the job divided
by the speed of the machine:

pj
si

.

All jobs have to be processed. Per machine only one job can be processed
simultaneously. The objective pursued while scheduling the jobs is minimizing
the sum of the completion times of the jobs.

Summarizing:

• Job set: |J | = n

• Job lengths: pj , j ∈ J, p1 ≤ p2 ≤ . . . ≤ pn

• Machine set: |M | = m

• Machine speeds: si, i ∈M, s1 ≤ s2 ≤ . . . ≤ sm

• Objective function: ∑
j∈J

Cj

7



8 2.2. Single machine model

2.2 Single machine model

The single machine case with sum of completion times objective, also denoted
as 1||

∑
Cj , treats just one machine on which n jobs have to be scheduled. A

job j needs pj time to be processed on the machine and the objective is still to
schedule the jobs in such a way that the sum of completion times is minimized.

A schedule on one machine is just an ordering of the jobs. Let ϕ be such an
ordering. A schedule that follows from the ordering ϕ might look like the one
in Figure 2.1.

ϕ(1)︸ ︷︷ ︸
Cϕ(1)=pϕ(1)

ϕ(2)

︸ ︷︷ ︸
Cϕ(2)=pϕ(1)+pϕ(2)

. . . ϕ(n− 1)

︸ ︷︷ ︸
Cϕ(1)=

∑n−1
k=1 pϕ(k)

ϕ(n)

︸ ︷︷ ︸
Cϕ(1)=

∑n
k=1 pϕ(k)

Figure 2.1: A single machine schedule

Figure 2.1 also shows the completion time of each job in the schedule. It is
easy to see that the contribution of a job can be measured by its place in
the schedule and its processing time. This directly follows from rewriting the
objective function

n∑
k=1

Cϕ(k) =

n∑
k=1

k∑
l=1

pϕ(l)

= (pϕ(1)) + (pϕ(1) + pϕ(2)) + . . .+ (pϕ(1) + . . .+ pϕ(n))

= pϕ(1) + . . .+ pϕ(1)︸ ︷︷ ︸
n times

+ϕ(2) + . . .+ pϕ(2)︸ ︷︷ ︸
n−1 times

+ . . .+ ϕ(n)︸︷︷︸
1 time

= npϕ(1) + (n− 1)pϕ(2) + . . .+ pϕ(n)

=

n∑
k=1

(n− k + 1)pϕ(k).

Based on this notion it is easy to prove the optimality of the following algorithm,
which is a classical result by Smith [Smi56]. The Shortest Processing Time rule,
also known as Smith’s rule, schedules jobs in order of increasing job length. For
later use, the definition below is a generalization on Smith’s version to more
than one machine.

Algorithm 1 (Shortest Processing Time First Algorithm (SPT)). For a uni-
formly related machine scheduling problem define SPT to be as follows:

1. Take, from the jobs that have not been scheduled yet, the shortest job



Chapter 2. The problem setting 9

2. Schedule this job next on the machine which minimizes its completion
time

3. Repeat steps 1 and 2 until all jobs have been scheduled

Theorem 2.1. For a single machine scheduling problem the SPT algorithm
yields an optimal solution

Proof. Consider an optimal schedule µ. Suppose it is not in SPT order. Then
there exist two jobs j and k, such that k is scheduled later than j and pk < pj .
Let q and r denote the number of jobs scheduled after j and k respectively. Then
the combined contribution of j and k to the sum of completion times is qpj+rpk.
If the jobs are interchanged within µ the number jobs after any job other than
j or k does not change. Interchanging j and k produces a schedule in which
the combined contribution of j and k is rpj + qpk, which is less than qpj + rpk,
since r < q and pk < pj . So the schedule resulting from the interchange has
lower sum of completion times. Therefore µ is not optimal and thus any optimal
schedule is an SPT schedule.

2.3 Optimal solution algorithm

The optimal solution to a general Q||
∑
Cj instance can be found using the

Minimum Mean Flow Time Algorithm. The description below is based on the
one Horowitz and Sahni gave in [HS76].

Algorithm 2 (Minimum Mean Flow Time Algorithm (MFT)). For a uniformly
related machine scheduling problem define MFT to be as follows:

1. Give every machine a value label vi = 1
si

2. Take, from the jobs that have not been placed yet, the longest job

3. Add this job to the jobset of the machine with the lowest value label vi

4. Update the label for that machine to vi = vi + 1
si

5. Repeat steps 2 to 4 untill all jobs have been placed

6. For each machine do SPT on its jobset

The labels vi, give a value to the jobs’ positions in the schedule. Like the
positions on a single machine, the processing time of a job scheduled last on a
machine only contributes once to the objective value. The processing time of the
second last job contributes twice and, in general, the l-th last job contributes l
times to the objective value. The algorithm assigns to the longest job the best
position. The second longest job gets the second best position and so on. This
way it builds up an optimal solution to the problem. The following proof of
optimality of this algorithm for the Q||

∑
Cj problem follows the proof given

by Horowitz and Sahni [HS76].

Theorem 2.2. The MFT algorithm produces an optimal schedule.



10 2.4. The scheduling game

Proof. We assume without loss of generality that ties are broken based on index.
So in step 2 of the MFT algorithm the longest job with highest index is placed
first and for SPT the job with lowest index is scheduled first.

Let µ be the schedule produced by the MFT algorithm. Suppose µ is not
optimal. Then there exists some other schedule µ∗ which is optimal and has
sum of completion times less than that of µ. Assume, without loss of generality,
that µ∗ is an optimal schedule such that it has the lowest index highest index
job that is scheduled on a different machine in µ. So there is no optimal schedule
µ′ such that

max
j∈J

{
j
∣∣µ′j 6= µj

}
< max

j∈J

{
j
∣∣µ∗j 6= µj

}
.

Let j be the job with highest index that is scheduled on different machines in
µ∗ and µ and let µj and µ∗j denote the machines on which j is scheduled in
µ and µ∗ respectively. Consider the moment just before the MFT algorithm
placed job j on machine µj and let vµj

and vµ∗j be the value labels of machines
µj and µ∗j at that moment. Since all jobs with higher index than j have the
same place in µ and µ∗ we know that vµ∗j is the value label corresponding to job
j in schedule µ∗. So vµ∗j pj is the contribution of job j in schedule µ∗ and vµj

pj
is the contribution of job j in schedule µ. Since the MFT algorithm placed j on
µj we know that vµj ≤ vµ∗j .

We distinguish between two cases. First suppose that the number of jobs on
machine µj in schedule µ∗ is less than vµj

. Then placing job j on machine µj
instead of machine µ∗j changes the contribution of job j to the objective value
by at most (

vµj
− vµ∗j

)
pj ≤ 0

and does not increase the contribution of any other job to the objective value.
So this change results in a schedule that is no worse than µ∗ and has lower
highest index job that is scheduled on a different machine than in µ, which is a
contradiction to our assumption.

Now suppose the number of jobs on machine µj in schedule µ∗ is vµj
or more.

Let l be the job with the vµj
-th largest index on machine µj in schedule µ∗.

Note that l < j, since otherwise there is at least one job with index larger than
j that is scheduled different than in schedule µ. Now interchanging jobs j and
l in schedule µ∗ results in a change of the objective value of(

vµ∗j pl + vµjpj

)
−
(
vµ∗j pj + vµjpl

)
=
(
vµ∗j − vµj

)
(pl − pj) ≤ 0.

This interchange results in a schedule that is no worse than µ∗ and has lower
highest index job that is scheduled on a different machine than in µ. In both
cases we have a contradiction to our assumption, so there can not exist such a
schedule µ∗ and the schedule µ must be an optimal schedule.

2.4 The scheduling game

A game is defined by the strategies of its players and utility functions for each of
those players. Strategies of players may influence the utility of other players. In



Chapter 2. The problem setting 11

this thesis we treat the uniformly related machine scheduling game with n jobs
and m machines. We denote the set of jobs with J and the set of machines with
M . Each job j ∈ J has its own agent. These agents are the players of the game.
The strategy of an agent consists of choosing one of the machines for his job.
In this thesis we only consider so called pure strategies, strategies which consist
of one choice. This is in contrast to mixed strategies, where players may define
a probability distribution over all their possible choices. A strategy profile, σ,
consists of n strategies, played by the n agents. The disutility function for agent
j for strategy profile σ, uj(σ), is equal to the completion time of job j.

To determine the completion time of a job it is necessary to know how the jobs
are scheduled per machine. To achieve this, the machines have a local scheduling
rule. These scheduling rules can be used to improve the price of anarchy of the
game and therefore can be interpreted as coordination mechanisms [CKN04].
Since SPT is optimal on one machine, an interest for SPT as a local scheduling
rule is obvious. Therefore we only use SPT as the local scheduling rule for each
machine. Furthermore, we assume that all machines use the same rule to break
ties between jobs with equal length. Without loss of generality we assume that
for the MFT algorithm the same tie-breaking rule is used, both in step 2 and
step 6, and we order the jobs such that the tie breaking rule is lowest index
first. Knowing the local scheduling rule for each machine, the strategy profile σ
also defines a schedule of the jobs on the machines. Since both in the optimal
solution and the equilibrium solution the scheduling per machine is done in
the same way, we will use the strategy profile σ to denote the corresponding
schedule. So both the schedule σ and the strategy profile σ refer to the same
thing. Furthermore for any schedule σ, σj refers to the strategy of job j within
σ or the machine on which j is scheduled in σ.

Within the game each of the agents has its objective, but we want to measure
one social objective. This social objective in our case is minimizing the sum
of completion times of the jobs. The sum of completion times is, unlike other
social objective functions, the sum of the utilities of the agents. Such a social
objective function is also referred to as a utilitarian social objective function.

Summarizing:

• Job set: |J | = n

• Machine set: |M | = m

• Local scheduling rule: SPT

• Strategy profile of all jobs: σ ∈Mn

• Strategy of a job j: σj ∈M

• Utility of a job j (to be maximized):

uj(σ) = −Cj(σ) = −
∑
k≤j
σk=σj

pk
sσj



12 2.5. Equilibrium solution algorithm

• Social objective (to be minimized):∑
j∈J

Cj

2.5 Equilibrium solution algorithm

If ν is a equilibrium solution in a uniformly related machine scheduling game,
with SPT as local scheduling rule, the Nash equilibrium property, (1.1), gives
us

∑
k≤j
νk=νj

pk
sνj
≤
∑
k<j
νk=σj

pk
sσj

+
pj
sσj

∀σj ∈M, ∀j ∈ J , (2.1)

where νk denotes the machine chosen by job k in ν and σj denotes an arbitrary
other choice for job j.

For uniformly related machine scheduling, the SPT algorithm is also known as
the Ibarra-Kim algorithm. The algorithm was described by Ibarra and Kim in
[IK77], as a heuristic for unrelated machine scheduling with makespan objective.
The following two lemma’s shows that exactly this algorithm constructs the
equilibrium solutions, in which we are interested.

Lemma 2.3. The SPT algorithm yields an equilibrium solution.

Proof. Let ν be the schedule produced by the SPT algorithm. Consider the
moment that the SPT algorithm schedules job j on machine νj . We know
that, at that moment, the choice of νj minimizes the completion time of job j.
But, since all jobs with smaller index than j are already scheduled when SPT
schedules j, any job considered later than j does not influence the completion
time of j. Since this is true for any job j, ν must be an equilibrium schedule.

Lemma 2.4. The SPT algorithm constructs all equilibrium solutions for uni-
formly related machine scheduling games, depending on how ties are broken.

Heydenreich, Müller and Uetz prove Lemma 2.4 in [HMU07] for unrelated ma-
chines. We will give a proof for uniformly related machines based on this result.

Proof. We already know that any resulting schedule of the SPT algorithm is an
equilibrium solution. So proving that any equilibrium solution is a realization
of the SPT algorithm, proves the theorem.

Suppose ν is an arbitrary equilibrium schedule. With Cj being the completion
time of job j, a non-decreasing order of Cj is exactly a non-decreasing order
of processing times. If it is not, then two jobs k and k′ exist with k′ > k and
Ck′ < Ck. So k and k′ are not scheduled on the same machine. But if k would
choose machine νk′ , instead of νk, it would be processed before k′. But then,
since k is not longer than k′, it must have a new completion time smaller than



Chapter 2. The problem setting 13

the old completion time of k′ and therefore its new completion time is smaller
than its old completion time. Thus ν was not an equilibrium solution.

Now if we successively take the shortest job j and schedule it on machine νj ,
this reproduces the equilibrium solution. But, at the same time, we choose for
each consecutive job with smallest index, a machine for which its completion
time is minimal. If νj is not a machine for which job j’s completion time
is minimal, then, since all jobs with smaller index than j already have been
scheduled, there is a machine on which j’s completion time is smaller than Cj ,
if j chooses that machine. Thus νj is not a best response for j and ν is not an
equilibrium solution. So scheduling the jobs in non-decreasing order according
to ν is exactly a realization of the SPT algorithm. Since this is true for any
equilibrium solution ν, this proves Lemma 2.4.

We see that the price of anarchy for Q||
∑
Cj games is exactly the ratio be-

tween the objective value from an SPT schedule and the objective value of the
optimal solution for the Q||

∑
Cj scheduling model. Such a ratio is also known

as the performance ratio of the SPT algorithm on Q||
∑
Cj . While both the

Q||
∑
Cj model and the SPT algorithm are long known, there are no known

results (to us) on this performance ratio, before the results from game theoretic
research done lately ([CGM10], [CQ10]). This may well be due to the fact that
already an efficient optimal algorithm was known and no one was interested in
approximation algorithms for the problem.

2.6 Robust price of anarchy

Different ways exist to prove upper bounds on the price of anarchy, one of which
is through a smoothness argument as described by Roughgarden in [Rou09]. If
we translate Roughgardens definition of smoothness to our scheduling game,
then it says that the game is (λ, µ)-smooth if, for any two schedules σ and σ∗

n∑
j=1

Cj(σ
∗
j , σ−j) ≤ µ

n∑
j=1

Cj(σ) + λ

n∑
j=1

Cj(σ
∗), (2.2)

for some 0 ≤ µ < 1 and λ ≥ 0. If this holds for any two schedules, then it also
holds for any equilibrium schedule σ and optimal schedule σ∗. Since the left
hand side of (2.2) sum over the completion time of job j in a schedule where
j is moved from its equilibrium solution to another machine, the equilibrium
solution must be less than the left hand side of (2.2). So, letting σ be the highest
valued Nash equilibrium and σ∗ be an optimal solution, from (2.2) we get



14 2.7. Related Work

n∑
j=1

Cj(σ) ≤
n∑
j=1

Cj(σ
∗
j , σ−j) ≤ µ

n∑
j=1

Cj(σ) + λ

n∑
j=1

Cj(σ
∗)

⇔ (1− µ)

n∑
j=1

Cj(σ) ≤ λ
n∑
j=1

Cj(σ
∗)

⇔ POA =

∑n
j=1 Cj(σ)∑n
j=1 Cj(σ

∗)
≤ λ

1− µ
.

In his paper Roughgarden shows that a smoothness argument not only suffices
to prove the pure price of anarchy for a game, but it also proves the stronger
robust price of anarchy, which he defines as

inf

{
λ

1− µ

∣∣∣∣ (λ, µ) s.t. the game is (λ, µ)-smooth

}
.

Furthermore Roughgarden shows that the robust price of anarchy is also gives
the same upper bound on no-regret sequences, course correlated equilibriums
and mixed Nash equilibriums.

2.7 Related Work

Recently two papers established bounds on the price of anarchy for schedul-
ing models with sum of completion times objective. In [CQ10], Correa and
Queranne show that the price of anarchy for the restricted uniformly related
machine scheduling game with weighted sum of completion times objective
(RQ||

∑
wjCj) is equal to 4. Correa and Queranne use a generalized version

of SPT as local scheduling rule, namely the Weighted Shortest Processing Time
First rule (WSPT). This scheduling rule schedules jobs according to increasing
pj
wj

ratio.

In their paper Correa and Queranne use two lemmas that do apply toRQ||
∑
wjCj

games, but not to Q||
∑
Cj games. The Essential Machines Lemma says that

for any instance of the game there is always an instance where all jobs are re-
stricted to only two machines that attains the same price of anarchy. The idea
of the proof is that it is possible to restrict every job to only the machines it is on
in the optimal and the equilibrium solution. Then both these solutions will stay
the same and thus the price of anarchy will stay the same. Furthermore Correa
and Queranne show that there is an instance with highest price of anarchy that
has wj = pj for all jobs j. Of course both these lemmas do hold for Q||

∑
Cj

games, but they both result in new problems that do not fit into the Q||
∑
Cj

model. To be precise, the application of both lemmas results in exactly the the
same set of instances of RQ||

∑
wjCj games that Correa and Queranne use to

prove their result. Therefore this will not lead to any new result for Q||
∑
Cj

games.

Correa and Queranne also construct instances, which price of anarchy approach
4 arbitrarily close. These instances have unit machine speeds and unit job



Chapter 2. The problem setting 15

lengths. The high price of anarchy is the direct result of the restricted sets of
machines on which each job can be processed.

Cole, Gkatzelis and Mirrokni ([CGM10]) treat R||
∑
wjCj games with, among

other coordination mechanisms, WSPT as local scheduling rule. They show that
the upper bound on the price of anarchy of 4 also holds for the more general
R||
∑
wjCj games. Their proof is in fact a (2, 12 )-smoothness result, so they

actually prove an upper bound on the robust price of anarchy. In Appendix C
we follow this proof to find an upper bound of 4 for Q||

∑
Cj . Furthermore Cole

et al. prove a lower bound of 3 for the POA of R||
∑
Cj . Their proof comes

from a so-called game graph, where every machine is represented by a vertex
and every job by an edge from the machine it is on in the optimal schedule
to the machine it is on in the equilibrium solution. This cannot be done in
the Q||

∑
Cj setting since it requires restricting a job to using only one of two

machines, while other jobs are restricted to other machines.





Chapter 3

Instances with large price
of anarchy

In this chapter we set out to find instances of the Q||
∑
Cj game, with high

price of anarchy. First we derive properties of the game that narrow down the
set of instances that can have maximal price of anarchy. After that we discuss
some simple instances and compute their price of anarchy. In Section 3.3 we
define a set of instances that results in a lower bound on the price of anarchy of
e
e−1 ≈ 1.5820.

3.1 Reducing the set of instances

In this section we derive properties of the Q||
∑
Cj game that we use as tools

for finding instances with high price of anarchy. In Chapter 4 we will also use
these tools to find upper bounds on the price of anarchy.

The first reduction is based on the following lemma:

Lemma 3.1. Any instance I may be rescaled such that the speed of machine
1 is set to 1, without changing the processing times pij =

pj
si

for pairs (i, j),
i ∈M, j ∈ J .

Proof. Suppose the instance I has speed s1 on machine 1. We multiply all
machine speeds and all job lengths by a factor 1

s1
. Machine 1 now has speed 1

and the processing time of any job j on any machine i is 1
s1
· pj/

(
1
s1
· si
)

=
pj
s1

.

So for all j and i the processing time,
pj
si

, remains the same.

As a consequence we may, without loss of generality, restrict to instances where
the speed of machine 1 is 1. In a similar way we could change the length of one
job instead of the speed of one machine. But, since we are only interested in
preserving the price of anarchy and not the whole instance, we use the following
somewhat stronger observation.

17



18 3.1. Reducing the set of instances

Lemma 3.2. Multiplying the lengths of all jobs by a factor α does not affect
the price of anarchy.

Proof. Consider the MFT algorithm. Notice that multiplying all lengths by a
factor α does not change the order in which the jobs are treated by the algorithm.
So, since the MFT algorithm only considers the order of the jobs and not their
exact length, it directly follows that all jobs are on the same machine as they
would be without the change in length. So the objective value of the optimal
solution is just α times the objective value before the change in length.

Now consider the SPT algorithm. If we proof that, for the SPT algorithm, the
objective value also changes by exactly a factor α, we are done. Notice again
that multiplying all lengths by a factor α does not change the order in which the
jobs are treated by the algorithm. Let ν be the SPT schedule for the unchanged
instance and ν′ be the SPT schedule for the changed instance. Consider, for
both instance, the moment just before job j is scheduled by SPT. It is easy to
see that if all jobs with smaller index than j are, per job, on the same machine
in ν and ν′, job j is also scheduled on the same machine in both schedules and
that its completion time in ν′ is exactly α times its completion time in ν. But,
since this holds for any job, ν and ν′ must be the same schedule, up to a factor
α, and the objective value of nu′ is exactly α time the objective value of ν.

From Lemmas 3.1 and 3.2 together, we assume without loss of generality that
s1 = 1 and p1 = 1, unless stated otherwise.

Lemma 3.3. A machine that is not used in an optimal solution will neither be
used in an equilibrium solution with highest objective value.

Proof. Suppose the lemma does not hold. Then, for some optimal solution µ
and any equilibrium schedule with highest objective value ν, there is at least
one machine that has no jobs scheduled on it in µ, but does have a job scheduled
on it in ν.

Let i be a machine with the highest index that has no jobs scheduled on it in
µ. We rescale the whole model to have si = 1.

Using value labels as in the MFT algorithm, a potential job on machine i would
get value label 1. This means that, in the optimal solution, none of the other
machines can have a job on a position with higher value. It immediately follows
that no machine can have more jobs than its own speed rounded down. So, for
the total number of jobs,

n ≤
m∑

l=i+1

bslc. (3.1)

Suppose j is the longeest job such that νj = i and let Cj(l) be its completion
time if it would be scheduled on machine l. Then

Cj(l) ≥ Cj(i) ≥ pj ∀l.



Chapter 3. Instances with large price of anarchy 19

If all machines l′ > i have at least bsl′c jobs scheduled on it in ν, we get

n ≥ 1 +

m∑
l=i+1

bslc,

which is a contradiction with respect to (3.1). So we conclude that there must
be at least one machine l′ > i that has at most bsl′c − 1 jobs scheduled on it in
ν.

Now, if we schedule j on l′, j must be the bsl′c-th largest job on l′, since
otherwise

Cj(l
′) =≤ pj

sl′
+
∑
k<j
νk=l

′

pk
sl′

<
bslc · pj
sl′

≤ pj ≤ Cj(i),

which is a contradiction. But that means that j can be scheduled on machine
l′ without increasing the completion time job j itself or any other job. This
results in an equilibrium schedule with less jobs scheduled on machines that are
empty in µ, which is a contradiction.

From lemma 3.3 we know that we may assume that for an instance with maximal
price of anarchy all machines are used in the optimal solution.

Lemma 3.4. There exists an instance with maximal price of anarchy in which
the machines that are empty in the equilibrium solution all have the same speed.

Proof. We know we may assume there are no machines that are empty in the
optimal solution. So any empty machine in the equilibrium solution is used in
the optimal solution. Let the highest speed of any machine that is empty in
the equilibrium solution be s. Then, letting every empty machine have speed
s, only improves the optimal solution, while the machines stay empty in the
equilibrium solution, which therefore does not change. So this can only increase
the price of anarchy.

3.2 Simple instances

In this section we construct some instances for which we compute the price of
anarchy. We start by looking at instances for which the number of machines is
equal to the number of jobs and machines and jobs can be paired such that the
speed of the machine equals the length of the job. So

n = m

pj = sj ∀j ∈ {1, . . . , n}.

We look at instances for which both in the optimal solution and the equilibrium
solution each machine has only one job. Then in both the optimal and the
equilibrium solution the completion time of a job is equal to it length divided
by the speed of the machine it is on. When using the MFT algorithm to find



20 3.2. Simple instances

the optimal solution each job is placed on the machine with the lowest value
label. However, since no machine gets two jobs in the optimal solution, this
is the same as picking the fastest machine that has no job placed on it. The
order in which the jobs are placed on the machines is from longest first, so job
j is scheduled on machine j. In the equilibrium solution we also have that no
machine has two jobs scheduled on it, so only machines that are empty need
to be considered to schedule a job on. Since the jobs are scheduled in SPT
order and on the machine that gives them the lowest completion time, a job j
is scheduled on machine n− j + 1.

Since, in the optimal solution, job j is scheduled on machine j and sj = pj , the
objective function in the optimal solution is just the number of jobs, n. So the
price of anarchy is just the average completion time in the equilibrium solution.
Consider jobs j and n − j + 1. These jobs interchange machines when going
from the optimal solution to the equilibrium solution. We can remove these two
jobs with their corresponding machines without changing the completion time
of any other job. Now let jobs k and n− k + 1 be the two jobs such that

Ck(ν) + Cn−k+1(ν) = max
j∈J

(Cj(ν) + Cn−j+1(ν)) .

Then

POA(I) =

∑
j∈J Cj

n

=
1

2

∑
j∈J Cj

n
+

1

2

∑
j∈J Cn−j+1

n

=
1

2

∑
j∈J Cj + Cn−j+1

n

≤ 1

2

∑
j∈J Ck + Cn−k+1

n

=
Ck + Cn−k+1

2
, (3.2)

which is the price of anarchy of an instance with only jobs k and n − k + 1
and their corresponding machines. Considering this we only have to look at
instances with two machine and two jobs with p1 = s1 = 1 and p2 = s2. Then
(3.2) becomes

1/s2 + s2
2

.

Now it is easy to see that the maximum price of anarchy is 13
12 , which is for

s2 = 3
2 .

A somewhat more interesting set of instances to look at are those that have two
machines, but with arbitrary processing times for the jobs. To keep the optimal
and equilibrium solutions easy to determine we restrict the number of jobs to
3. So

m = 2

n = 3

For such an instance I, let s1 = 1, s2 = s > 1 and p1 = 1. If s < 2 the optimal
solution is µ = (µ1, µ2, µ3) = (2, 1, 2). If 2 ≤ s < 3 the optimal solution is



Chapter 3. Instances with large price of anarchy 21

(1, 2, 2). We need not consider s ≥ 3 since then all jobs are on machine 2 in
both the optimal and the equilibrium solution.

First suppose s < 2. In the equilibrium solution, job 1 is always on machine
2. So for s < 2 job 2 also needs to be on machine 2 otherwise the equilibrium
solution is optimal. This gives us that

p2 ≥
1 + p2
s
⇔ p2 ≥

1

s− 1
.

After this there are two possibilities for job 3, namely either it has

p3 <
1 + p2
s− 1

,

in which case it is on machine 1 in the equilibrium solution, or

p3 ≥
1 + p2
s− 1

and then it is on machine 2. It is easy to see that both C1(µ) ≤ C1(ν) and
C2(µ) ≤ C2(ν). So job 3 is the only job with completion higher in the equilib-
rium solution than in the optimal solution. Now let p3 and p′3 be two different
possible lengths of job 3 and C3(ν), C3(µ) and C ′3(ν), C ′3(µ) the corresponding

completion times. Then, given p2, if C3(ν)
C3(µ)

≤ C′3(ν)
C′3(µ)

and C3(ν) ≤ C ′3(ν), then

C1(ν) + C2(ν) + C3(ν)

C1(µ) + C2(µ) + C3(µ)
≤ C1(ν) + C2(ν) + C ′3(ν)

C1(µ) + C2(µ) + C ′3(µ)
.

From this and Lemma B.1 (see Appendix B), we see that if p3 is such that job
3 is on machine 1, taking p3 maximal gives the highest price of anarchy. This
would mean that p3 = 1+p2

s−1 , but then we may assume p3 ≥ 1+p2
s−1 . Then we can

write the price of anarchy as

POA(I) =
3+2p2+p3

s

p2 + 2+p3
s

=
3 + 2p2 + p3
2 + sp2 + p3

.

Then, since 3+2p2
2+sp2

≥ 1 and using Lemma B.1, for the maximal price of anarchy

we need p3 to be minimal. So p3 = 1+p2
s−1 . This leaves us with

POA(I) =
3 + 2p2 + 1+p2

s−1

2 + sp2 + 1+p2
s−1

=
3s− 2 + (2s− 1)p2

2s− 1 + (s2 − s+ 1)p2
.

From Corollary B.2 we know that if

3s− 2

2s− 1
≥ 2s− 1

s2 − s+ 1
∀1 ≤ s ≤ 2,

then p2 should be minimal. Now the above is equivalent to



22 3.2. Simple instances

(3s− 2)(s2 − s+ 1) ≥ (2s− 1)2

⇔ (3s− 2)(s2 − s+ 1)− (2s− 1)2 ≥ 0

⇔ 3s3 − 9s2 + 9s− 3 ≥ 0.

This is true for all s, 1 < s ≤ 2. So p2 = 1
s−1 . Now we have p1 = 1, p2 =

1
s−1 , p3 = s

(s−1)2 , and we get an expression for the price of anarchy that only

depends on s:

POA(I) =
3 + 2

s−1 + s
(s−1)2

2 + s
s−1 + s

(s−1)2
=

3(s− 1)2 + 2(s− 1) + s

2(s− 1)2 + s(s− 1) + s
=

3s2 − 3s+ 1

3s2 − 4s+ 2
.

This expression is maximized at s = 1 +
√
3
3 for which the price of anarchy is

3
2 ·

2+
√
3

3+
√
3
≈ 1.1830.

Now suppose 2 ≤ s < 3. The optimal solution is (1, 2, 2). For the equilibrium
solution there are two possibilities. Since s ≥ 2, both job 1 and job 2 are
scheduled on machine 2. The two possible equilibrium solutions are (2, 2, 1) and
(2, 2, 2). The first of these solutions occurs when p3 ≤ 1+p2

s−1 . If p3 ≥ 1+p2
s−1 the

other schedule is the equilibrium solution. Notice that when p3 = 1+p2
s−1 both

are an equilibrium solution.

Suppose p3 ≤ 1+p2
s−1 . Then the objective value in the optimal solution equals

OPT(I) = 1 +
2p2 + p3

s
.

For the equilibrium solution we have

NE(I) =
2 + p2
s

+ p3.

This gives us

POA(I) =
2 + p2 + sp3
s+ 2p2 + p3

.

From Lemma B.1 and Corollary B.2, we see that, since s ≥ 2, to maximize this
expression, p3 should be maximized, while p2 should be minimized. This means
that p2 = 1 and p3 = 2

s−1 . So

POA(I) =
2 + 1 + s 2

s−1

s+ 2 + 2
s−1

=
5s− 3

s2 + s
,

which has its maximum at s = 2. Then the price of anarchy is equal to 7
6 ≈

1.1667.

Finally suppose p3 ≥ 1+p2
s−1 , such that all jobs are on machine 2 in the equilibrium

solution. Then for the price of anarchy we get

POA(I) =
3 + 2p2 + p3
s+ 2p2 + p3

.



Chapter 3. Instances with large price of anarchy 23

From Corollary B.2 we see that, to maximize this expression, in this case both
p2 and p3 need to be minimal. So p2 = 1 and p3 = 2

s−1 , which is exactly the

same as the above. So again the price of anarchy is 7
6 ≈ 1.1667.

We conclude that, for instances with two machines and 3 jobs, the instance

with the maximal price of anarchy has s1 = 1, s2 = 1 +
√
3
3 and p1 = 1, p2 =

1
s2−1 , p3 = 1+p2

s2−1 . This instance has price of anarchy 3
2 ·

2+
√
3

3+
√
3
≈ 1.1830.

We summarize the results from this section in the next theorem.

Theorem 3.5. For Q||
∑
Cj game instances with two machines the price of

anarchy is at least 3
2 ·

2+
√
3

3+
√
3
≈ 1.1830. Furthermore for instances with no more

than 3 jobs this lower bound is tight.

3.3 Instances with all jobs on the fastest ma-
chine in equilibrium

The idea to look at instances that have all jobs scheduled on the fastest machine
in the equilibrium solution comes from the next lemma.

Lemma 3.6. No equilibrium solution can have higher objective value than the
schedule in which all jobs are scheduled in SPT order on the fastest machine.
So

NE(I) ≤
n∑
j=1

j∑
k=1

pk
sm

=

n∑
j=1

(n− j + 1)
pj
sm

. (3.3)

Proof. Let Cj be the completion time of job j for an arbitrary equilibrium
solution ν. Then we know that

Cj ≤
∑
k<j
νk=i

pk
si

+
pj
si

∀i, j.

So in particular:

Cj ≤
∑
k<j
νk=m

pk
sm

+
pj
sm

≤
∑
k<j

pk
sm

+
pj
sm

=

j∑
k=1

pk
sm

∀j.

Now, summing over all j gives the desired result

n∑
j=1

Cj ≤
n∑
j=1

j∑
k=1

pk
sm

.



24 3.3. Instances with all jobs on the fastest machine in equilibrium

Lemma 3.6 clearly suggests that instances which have all jobs on the fastest
machine in the equilibrium solution are interesting to look at. However it does
not say anything about whether these instances will contain an instance which
has the highest price of anarchy overall.

From Lemma 3.4 we know that we may assume that every machine that is empty
in the equilibrium solution has speed 1. We let s be the speed of the fastest
machine and all other machines have speed 1.

When all jobs are on the fastest machine in the equilibrium solution, the number
of slow machines does not change the equilibrium. However it does change the
optimal solution. From the MFT algorithm it is easy to see that, in the optimal
solution, the first bsic jobs are scheduled on the fast machine. The remaining
jobs are scheduled on the slow machines until every slow machine has a job
assigned to it. The contribution of the jobs that are remaining after that is
higher than the length of the job. From this it is easy to see that the instances
with the highest price of anarchy have

m∑
i=1

bsic ≥ n.

It directly follows that the optimal solution is minimal when there are at least
n− bsc slow machines.

Consider a job j. When all preceding jobs are on the fastest machine in the
equilibrium solution, we get for the processing time of job j

pj ≥
j∑

k=1

pk
s

⇔
(

1− 1

s

)
pj ≥

j−1∑
k=1

pk
s

⇔ pj ≥
s

s− 1

j−1∑
k=1

pk
s

=
1

s− 1

j−1∑
k=1

pk (3.4)

So if all jobs satisfy (3.4), then all jobs are on the fastest machine in the equi-
librium solution.

It is easy to see that when s = 2, inequality (3.4) becomes

pj ≥
j−1∑
k=1

pk.

With this in mind we look at the following set of instances.

Instance 1. Let n be the number of jobs, two of which have length 1 and the
remaining n − 2 jobs have length pj =

∑j−1
k=1 pk, for all j, 3 ≤ j ≤ n. Let

m = n− 1 be the number of machines, of which one has speed 2 and the rest of
the machines has speed 1.



Chapter 3. Instances with large price of anarchy 25

Easy calculations show that for Instance 1

pj =

{
1 if j ∈ {1, 2}
2j−2 otherwise

The lengths of the jobs satisfy (3.4), so the schedule with all jobs on the fastest
machine is the equilibrium solution with highest objective value. An optimal
solution is when the two longest jobs are on the fast machine and all other jobs
are on a machine with speed 1.

Theorem 3.7. The price of anarchy of Instance 1 goes to 4
3 as n goes to infinity.

Proof. Let I denote Instance 1. For n ≥ 4, the objective value in the optimal
solution (OPT(I)) is

OPT(I) =

n−2∑
j=1

pj+
pn−1

2
+
pn−1 + pn

2
= pn−1+pn−1+

pn
2

= 2·2n−3+
2n−2

2
= 3·2n−3

and the objective value in the equilibrium solution (NE(I)) is

NE(I) =

n∑
j=1

j∑
k=1

pk
2

=
p1
2

+
p1 + p2

2
+

n∑
j=3

pj+1

2

=
p1
2

+
p1 + p2

2
+

n∑
j=3

2j−1

2
=
p1
2

+ p2 +

n∑
j=3

2j−2

=

n∑
j=1

pj −
p1
2

= 2n−1 − 1

2
= 4 · 2n−3 − 1

2
.

Now the price of anarchy (POA(I)) is

POA(I) =
NE(I)

OPT(I)
=

4 · 2n−3 − 1
2

3 · 2n−3
=

4

3
− 1

3 · 2n−2
,

which indeed goes to 4
3 as n goes to infinity.

The main theorem of this chapter uses instances like Instance 1, but with vari-
able speed for the fastest machine.

Theorem 3.8. The price of anarchy for uniformly related machine scheduling
games with sum of completion times objective is no less than e

e−1 ≈ 1.5820.

Proof. Consider an instance I with all n jobs on the fastest machine in the
equilibrium solution. Let the speed of the fastest machine be s. For ease of
calculations let s be integer. The speed of all other machines is 1. Let there be
m = n− s+ 1 machines. This gives

m∑
i=1

si = n.



26 3.3. Instances with all jobs on the fastest machine in equilibrium

Let

x =
s

s− 1

and define the lengths of the jobs as

pj =

{
1 if 1 ≤ j ≤ s
xj−s if s+ 1 ≤ j ≤ n .

The first s jobs automatically satisfy (3.4) and, since

1

s− 1

k∑
j=1

pj =
1

s− 1
pk +

1

s− 1

k−1∑
j=1

pj ≤
1

s− 1
pk + pk =

s

s− 1
pk,

if the preceding job j, j ∈ {s, . . . , n − 1} fulfills (3.4), then the succeeding job,
j + 1, does too.

Note that, when we take the sum of k summands of size xj , j ∈ {1, . . . , k}, we
get

k∑
j=0

xj =

k∑
j=0

(
s

s− 1

)j

=

(
s
s−1

)k+1

− 1(
s
s−1

)
− 1

= (s− 1)

((
s

s− 1

)k+1

− 1

)

= (s− 1)

(
s

s− 1

)k+1

− (s− 1) = (s− 1)xk+1 − (s− 1)

= s

(
s

s− 1

)k
− (s− 1) = sxk − (s− 1).

In the optimal solution the s longest jobs are on the fastest machine. All other



Chapter 3. Instances with large price of anarchy 27

jobs are on a slow machine. So the objective value in the optimal solution is:

OPT(I) =

s−1∑
j=1

pj +

n−s∑
j=s

pj +

n∑
j=n−s+1

j∑
k=n−s+1

pj
s

=

s−1∑
j=1

pj +

n−s∑
j=s

xj−s +

n∑
j=n−s+1

j∑
k=n−s+1

xk−s

s

=

s−1∑
j=1

1 +

n−2s∑
j=0

xj +

n∑
j=n−s+1

1

s

(
j−s∑
k=0

xk −
n−2s∑
k=0

xk

)

= s− 1 + (s− 1)xn−2s+1 − (s− 1) +

n∑
j=n−s+1

(
xj−s − xn−2s+1

)
= (s− 1)xn−2s+1 +

n−s∑
j=n−2s+1

xj −
n∑

j=n−s+1

xn−2s

= (s− 1)xn−2s+1 + (s− 1)xn−s+1 − (s− 1)xn−2s+1 − sxn−2s

= (s− 1)xn−s+1 − (s− 1)xn−2s+1. (3.5)

In the equilibrium solution, ν, all jobs are on the fastest machine. The comple-
tion time of the first s− 1 jobs is

Cj(ν) =
j

s
∀j ≤ s− 1

and for the s-th job this is 1. For every next job we have:

Cj(ν) =

j∑
k=1

pk
s

=
s− 1

s
+

j∑
k=s

xj−s

s

=
s− 1

s
+

j−s∑
k=0

xj

s

=
s− 1

s
+ xj−s − s− 1

s

= xj−s = pj .

So in the equilibrium solution every job, except for the first s−1, has completion
time equal to its length.

This makes computing the value of the objective function in the equilibrium



28 3.3. Instances with all jobs on the fastest machine in equilibrium

solution easy:

NE(I) =

s−1∑
j=1

j

s
+

n∑
j=s

xj−s

=
s(s− 1)

2s
+

n−s∑
j=0

xj

=
(s− 1)

2
+ (s− 1)xn−s+1 − (s− 1)

= (s− 1)xn−s+1 − (s− 1)

2
. (3.6)

Combining (3.5) and (3.6) gives us the price of anarchy:

POA(I) =
(s− 1)xn−s+1 − (s−1)

2

(s− 1)xn−s+1 − (s− 1)xn−2s+1

=
xn−s+1 − 1

2

xn−s+1 − xn−2s+1

=
xs − 1

2x
−(n−2s+1)

xs − 1

=

(
s
s−1

)s
− 1

2

(
s
s−1

)−(n−2s+1)

(
s
s−1

)s
− 1

. (3.7)

Now, if we let n go to infinity, (3.7) becomes:

lim
n→∞

POA(I) =

(
s
s−1

)s
(

s
s−1

)s
− 1

(3.8)

and letting s also go to infinity, (3.8) goes to e
e−1 , which is approximately

1.5820



Chapter 4

Upper bounds on the price
of anarchy

The instances from Theorem 3.8 imply a lower bound on the a price of anarchy
of e

e−1 ≈ 1.5820. This chapter treats a couple of results leading to upper bounds
on the price of anarchy.

4.1 Known bounds

Upper bounds on the price of anarchy for more general scheduling models au-
tomatically provide us with upper bounds for the uniformly related machine
scheduling model. Although lower bounds for such models do not say anything
about lower bounds for our model, they do provide useful insight. Namely, if
we could prove an upper bound for our problem which is strictly less than a
lower bound for a more general problem, we may conclude that our model has a
strictly lower price of anarchy. Therefore it is interesting to look at both upper
and lower bounds for more general models from other literature. The work of
Cole, Gkatzelis and Mirrokni ([CGM10]) and Correa and Queyranne ([CQ10])
that we already discussed in section 2.7 provide both upper and lower bounds
that also apply to the Q||

∑
Cj game. The lowest upper bound on the Q||

∑
Cj

game, that follows directly from these results, is 4.

4.2 Unit speeds and unit lengths

In this section we prove that, when we look at the more specific models, with
either jobs with unit length or parallel machine instances, equilibrium solutions
are also optimal solutions. So for these instances the price of anarchy is equal
to 1.

Theorem 4.1. Equilibrium solutions for instances with unit job lengths are
optimal.

29



30 4.2. Unit speeds and unit lengths

Proof. An instance with unit job lengths has pj = 1 for all j ∈ J . So any
ordering of the jobs is an SPT order and all jobs are interchangeable without
effecting the value of the objective. Suppose both the SPT algorithm, in step 1,
and the MFT algorithm, in step 2, choose the job with lowest index. Let ν be
the schedule resulting from the SPT algorithm and let Ck(ν) be the completion
time of job k within that schedule. Finally let Ji(ν) be the set of all jobs that
are scheduled on machine i by the SPT algorithm. Then for Ck(ν) we have:

Ck(ν) = min
i∈M

∑
j<k

j∈Ji(ν)

pj
si

+
pk
si

= min
i∈M

∑
j<k

j∈Ji(ν)

1

si
+

1

si

= min
i∈M

|{j|j < k, j ∈ Ji(ν)}|+ 1

si
(4.1)

This means that the algorithm schedules a job k on the machine with the small-
est ratio (4.1), which is just the number of jobs on the machine plus one divided
by the speed of that machine.

Consider the iteration in which the MFT algorithm adds job k to the job set of
a machine, let v(k) be the value label of that machine just before the current
iteration. Let Ji(µ) be the set of jobs that the MFT algorithm schedules on
machine i. The following holds:

v(k) = min
i∈M

∑
j<k

j∈Ji(µ)

1

si
+

1

si

= min
i∈M

|{j|j < k, j ∈ Ji(µ)}|+ 1

si

So in fact the MFT algorithm chooses for job k exactly the same machine as
SPT does as long as both algorithms have the same number of jobs on each
machine. Since initially the number of jobs on each machine is zero for both
algorithms, both algorithms choose exactly the same number of jobs for each
machine. So any equilibrium schedule is also an optimal solution for instances
with unit job lengths.

Theorem 4.2. Equilibrium solutions for parallel machine scheduling instances
are optimal.

In section 5.3 of [Pin08] a intuitive proof of Theorem 4.2 is given. Here we give
a full formal proof of the theorem.

Proof. Assume that n
m is an integer number. If this is not the case add dummy

jobs with length 0 such that it is an integer number.

Consider the MFT algorithm. At any iteration, the value labels of any machine
equals the number of jobs already placed on that machine plus one. So the



Chapter 4. Upper bounds on the price of anarchy 31

machine with the lowest value label is simply the machine with the least jobs
placed on it. If there are m machines, the m longest jobs will be last on a
machine, the next m longest jobs will be second last on a machine and so on.
So any job k will have

⌊
n−k
m

⌋
jobs scheduled after it on its machine.

Now consider the SPT algorithm. If we know the place of a job on a machine we
know its contribution to the sum of completion times. So if the SPT algorithm
schedules all jobs on the same place on a machine as the MFT algorithm, the two
schedules have the same objective value. We will use a proof by mathematical
induction on the number of iterations of the SPT algorithm.

Note that, since all speeds are equal, only the starting time of the job to be
scheduled in step 2 of the SPT algorithm is decisive for its completion time. So
the machine it will be scheduled on is the machine with the smallest load.

Base step: For the m jobs with lowest index SPT will always choose an empty
machine. Without loss of generality assume that the first m jobs are scheduled
such that job j is scheduled on machine i and j = i.

Induction hypothesis: For 1 ≤ j ≤ k − 1 every job j is scheduled on the(
j
m −

⌊
j
m

⌋)
-th machine.

Induction step: Say k = x·m+l, for 1 ≤ l ≤ m. Then, every machine 1, . . . , l−1
has x + 1 jobs with smaller index than k scheduled on it, and every machine
l, · · · ,m has x jobs with smaller index than k scheduled on it. Let Ji be the
set of jobs that SPT schedules on machine i. From the induction hypothesis we
have, for machines 1, . . . , l − 1

∑
j<k
j∈Ji

pj =

x∑
z=0

pz·m+i ∀i ∈ {1, . . . , l − 1}.

For machines l, . . . ,m we have:

∑
j<k
j∈Ji

pj =

x−1∑
z=0

pz·m+i ∀i ∈ {l, . . . ,m}.

For any two jobs j and j′ we know that p′j ≥ pj , if and only if j′ ≥ j. So for
any machine i ∈ {l, . . . ,m}:



32 4.2. Unit speeds and unit lengths

∑
j<k
j∈Ji

pj =

x−1∑
z=0

pz·m+i

≤
x−1∑
z=0

pz·m+m

=

x−1∑
z=0

p(z+1)·m

=

x∑
z=1

pz·m

≤
x∑
z=1

pz·m+i′

≤
x∑
z=0

pz·m+i′ ∀i′ ∈ {1, . . . , l − 1}

and of course:

∑
j<k
j∈Ji

pj =

x−1∑
z=0

pz·m+i ≤
x−1∑
z=0

pz·m+i′ ∀i′ > i.

So the machine with the earliest starting time for job k is the machine with
lowest index from {l, . . . ,m}. Which is indeed machine l.

So by use of mathematical induction we find that each job k = x · m + l is
scheduled on machine l. Note that job k is scheduled (x+1)-st on that machine.
So for the number of jobs scheduled after job k we have

∑
j>k
k∈Jl

1 = |Jl| − (x+ 1) =
n

m
−
(⌊

k

m

⌋
+ 1

)
,

which is equal to
⌊
n−k
m

⌋
. So in both schedules each job has the same number of

jobs scheduled after it and thus the contribution of each job is also the same in
both schedules.

Knowing that, for both instances with unit length jobs and instances in a parallel
machine environment, the price of anarchy is 1, the problem we are dealing with
is one of the simplest scheduling game models, with sum of completion time
objective, which has price of anarchy greater than 1.



Chapter 4. Upper bounds on the price of anarchy 33

4.3 Upper bounds on the price of anarchy for
the Q||

∑
Cj game

We used different methods to find upper bounds on the price of anarchy. At
first Instance 1 was the only instance we had with high price of anarchy, so we
tried to compare arbitrary instances to Instance 1. Lemma 4.3 shows such a
comparison result.

Another approach is to compute lower bounds on the objective value of an
optimal solution and upper bounds on the objective value in an equilibrium
solution. Combining these bounds directly leads to an upper bound on the
price of anarchy. In section 4.3.2 we compute lower bounds on the optimal
solution. Together with the upper bounds for equilibrium solutions that we
show in section 4.3.3, we combine these in section 4.3.4 to get upper bounds on
the price of anarchy.

Our final method uses the Nash equilibrium property (1.1) to construct new
schedules, which we use to bound the objective value of the equilibrium solution.
We prove our main result, an upper bound of 3 on the price of anarchy, with
this method.

4.3.1 Comparing instances

Since we already know an instance which we think has a high price of anarchy,
we can try to compare other instances to that instance. If we succeed to proof
POA(I) ≤ αPOA(I∗) for some specific instance I∗ and I from a specified set
of instances and α ∈ R, we get a constant upper bound for instances from that
set.

The idea would be to begin with the instance I and through several transforma-
tions get to instance I∗. If then each step does not decrease the price of anarchy
this proves POA(I) ≤ POA(I∗). Transformation that decrease the price of
anarchy may be used as long as their product is no less than 1

α .

Lemma 4.3 is an example of a basic comparison result for instances with m− 1
machine with speed 1 and one machine with speed 2 and jobs that have length
equal to a power of 2.

Lemma 4.3. Let I be a uniformly related machine scheduling game with two
machine speeds, 1 and 2, n− 1 machines, of which one has speed 2, and m+ 1
jobs with processing times, pj ∈

{
2k|k ∈ N

}
. Then there exists an instance I ′

with all jobs on the fastest machine in the equilibrium solution, with price of
anarchy greater of equal to that of I.

Proof. If I has all job on the fastest machine in the equilibrium solution we are
done. So assume I has at least one job on a slow machine. Since an empty
slow machine is always available, by definition Ci(ν) ≤ pi, ∀i ∈ J . So for any
job j that is not on the fastest machine in the optimal solution, Cj(ν) ≤ Cj(µ).
Suppose such a job j is on a slow machine in the equilibrium solution. The
length of job j does not influence the completion time of any other job in either



34 4.3. Upper bounds on the price of anarchy for the Q||
∑
Cj game

ν or µ. Then, since by definition
∑n
i=1 Ci(µ) ≤

∑n
i=1 Ci(ν), removing j gives

us

POA(I ′) =

∑n
i=1 Ci(ν)− pj∑n
i=1 Ci(µ)− pj

≥
∑n
i=1 Ci(ν)∑n
i=1 Ci(µ)

.

So j can be removed without lowering the price of anarchy. We assume that all
of the n− 2 shortest jobs are on the fast machine in the equilibrium solution.

Note that for s = 2, in the proof of Theorem 3.8, (3.8) equals 4
3 and instances

from the proof satisfy all constraints. So proving that, for any instance that
does not have all jobs on the fastest machine in the equilibrium solution, the
price of anarchy is less than 4

3 is enough to prove the lemma.

Consider the 2 longest jobs. These are the only jobs that can have a higher
completion time in the equilibrium solution than in the optimal solution. Their
contribution to the objective in the optimal solution is

Cn−1(µ) + Cn(µ) =
pn−1

2
+
pn−1 + pn

2
= pn−1 +

pn
2

.

Note that if job j is the shortest job that is not on the fastest machine in the
equilibrium solution then

pj <

j−1∑
i=1

pi ≤ 2pj−1

and thus, since pi ∈
{

2k|k ∈ N
}
, ∀i, pj = pj−1.

We distinguish between three cases. Either both jobs n and n − 1 are not on
the fast machine, only job n is not on the fast machine, or only job n− 1 is not
on the fast machine. First suppose both jobs n and n − 1 are not on the fast
machine. Then pn = pn−1 = pn−2 and

POA(I) =

∑n−2
i=1 Ci(ν) + 2pn−2∑n−2
i=1 pi + 3

2pn−2
≤
∑n−2
i=1 pi + 2pn−2∑n−2
i=1 pi + 3

2pn−2
=

∑n−3
i=1 pi + 3pn−2∑n−3
i=1 pi + 5

2pn−2
,

which is less than 6
5 .

Now suppose only job n is not on the fast machine. Then pn = pn−1 and
pn−1 ≥

∑n−2
i=1 pi. For the price of anarchy we get:

POA(I) =

∑n−2
i=1 Ci(ν) +

∑n−2
i=1

pi
2 + 3

2pn−1∑n−2
i=1 pi + 3

2pn−1
≤
∑n−2
i=1 pi + 2pn−1∑n−2
i=1 pi + 3

2pn−1
<

4

3
,

where the strict inequality holds, because if
∑n−2
i=1 pi = 0, there would be only

two jobs and the price of anarchy would be 1.

Finally suppose that job n − 1 is the only job that is not on the fast machine.
Then pn−1 = pn−2 and pn ≥

∑n−2
i=1 pi. Notice also that if their are only three

jobs with p1 = p2 the price of anarchy is 1, so assume n > 3. Then we also
know that pn > pn−2 and thus pn ≥ 2pn−2. Using this we see that

POA(I) =

∑n−2
i=1 Ci(ν) +

∑n−2
i=1

pi
2 + 1

2pn + pn−2∑n−2
i=1 pi + 1

2pn + pn−2
≤
∑n−2
i=1 pi + 1

2pn + 2pn−2∑n−2
i=1 pi + 1

2pn + pn−2



Chapter 4. Upper bounds on the price of anarchy 35

and, since pn ≥ 2pn−2, we have∑n−2
i=1 pi + 1

2pn + 2pn−2∑n−2
i=1 pi + 1

2pn + pn−2
≤
∑n−3
i=1 pi + 4pn−2∑n−3
i=1 pi + 3pn−2

<
4

3
.

This completes the proof.

Notice that, even if Lemma 4.3 can be extended to arbitrary s and more than
one fast machine, we still have not proved that the instances from Theorem 3.8
have the highest price of anarchy for machine with two speeds.

4.3.2 Lower bounds on the optimal solution

Lemma 4.4. For any uniformly related machine instance I

OPT(I) ≥
∑n
j=1(n− j + 1)pj∑m

i=1 si
=

∑n
j=1

∑j
k=1 pk∑m

i=1 si
. (4.2)

Proof. First we note that the right hand side of (4.2) is in fact the objective
value of an SPT schedule on one machine with speed

∑
si.

Let ϕ be a reordering of the jobs such that it corresponds to the order in which
jobs are completed in the optimal solution. So in the optimal solution

Cϕ1 ≤ Cϕ2 ≤ . . . ≤ Cϕn−1 ≤ Cϕn .

Then we know that at time Cϕj
a load of

∑j
k=1 pϕk

must have been completed
by the machines. The total capacity of the machines is

∑m
i=1 si per unit of time.

So completing the load of
∑j
k=1 pϕk

takes at least
∑j
k=1 pϕk

/
∑m
i=1 si units of

time. So for the optimal schedule we have

Cϕj
≥
∑j
k=1 pϕk∑m
i=1 si

.

Summing over all j then gives

n∑
j=1

Cϕj
≥
∑n
j=1

∑j
k=1 pϕk∑m

i=1 si

=

∑n
j=1 (n− j + 1)pϕj∑m

i=1 si
.

This is the objective value of some schedule on the single machine instance with
speed

∑
si. And, since SPT is the optimal schedule for the single machine

instance, we get

OPT(I) ≥
∑n
k=1(n− k + 1)pk∑m

i=1 si
,

which is the desired result.



36 4.3. Upper bounds on the price of anarchy for the Q||
∑
Cj game

Lemma 4.5. For any uniformly related machine instance I

OPT(I) ≥
∑n
j=1 pj

sm
. (4.3)

Proof. The best possible completion time for a job j in any schedule is when it
is scheduled first on the fastest machine. Its completion time then, is

pj
sm

. So
no schedule can be better than when all jobs have this completion time, which
gives us

OPT(I) ≥
∑n
j=1 pj

sm

as an upper bound on the optimal solution.

Lemma 4.6. Let I be a uniformly related machine scheduling instance, with job
set J . Let IPs be the parallel machine scheduling instance with the same job set
J and the same number of machines as I, but with the speeds of the machines
set to sm. Let µ be the optimal schedule for I and µPs be the SPT schedule for
IPs. Then

∑
j∈J

CIj (µ) ≥
∑
j∈J

CIPs
j (µPs), (4.4)

where CIj (σ) is the completion time of job j for instance I with schedule σ.

Proof. Note that µPs is both an equilibrium and an optimal schedule for IPs.
When we keep the optimal schedule on I and only speed up each machine to sm,
this can not increase the completion time of any job. This is then a schedule on
the parallel machine instance, which has lower sum of completion times. Since
µPs is the optimal schedule for IPs, this can only improve the schedule even
further and thus will never have higher objective value than µ on I. Thus∑

j∈J
CIj (µ) ≥

∑
j∈J

CIPs
j (µPs).

4.3.3 Upper bounds on the equilibrium solution

Lemma 4.7. For any uniformly related machine instance, I, and equilibrium
solution, ν,

∑
j∈J

Cj(ν) ≤
∑n
k=1(n− k + 1)pk∑m

i=1 si︸ ︷︷ ︸
(1)

+

∑n
j=1 pj∑m

i=1 si/(m− 1)︸ ︷︷ ︸
(2)

. (4.5)

Proof. We know that in the equilibrium solution

Cj(ν) ≤
∑
k∈Ji,k<j pk + pj

si
∀j, i.



Chapter 4. Upper bounds on the price of anarchy 37

So

siCj(ν) ≤
∑

k∈Ji,k<j

pk + pj ∀j, i.

Now summing over i gives

Cj(ν) ≤
∑
k<j pk∑m
i=1 si

+
mpj∑m
i=1 si

=

∑
k≤j pk∑m
i=1 si

+
(m− 1)pj∑m

i=1 si
∀j.

Now summing over j yields

∑
j∈J

Cj(ν) ≤
∑n
k=1(n− k + 1)pk∑m

i=1 si︸ ︷︷ ︸
(1)

+

∑n
j=1 pj∑m

i=1 si/(m− 1)︸ ︷︷ ︸
(2)

.

Lemma 4.8. Let I be a uniformly related machine scheduling instance, with
job set J . Let IP be the parallel machine scheduling instance with the same job
set J and the same number of machines as I, but with machines speed equal to
1. Let ν be the equilibrium schedule for I and νP be the SPT schedule for IP .
Then

∑
j∈J

CIj (ν) ≤
∑
j∈J

CIPj (νP ), (4.6)

where CIj (σ) is the completion time of job j for instance I with schedule σ.

Proof. Suppose (4.6) does not hold. Then ∃j∗ ∈ J such that

CIj∗(ν) > CIPj∗ (νP ). (4.7)

Let j∗ be the job with smallest index for which this holds. Since none of the
machines in I are slower than a machine in IP , higher completion time directly
implies higher starting time. So for j∗ we have

CIj∗(ν) > CIPj∗ (νP )

⇔ SIj∗(ν) +
pj∗

sνj∗
> SIPj∗ (νP ) + pj∗

⇒ SIj∗(ν) > SIPj∗ (νP ), (4.8)

where SIj (σ) is the starting time of job j in instance I with schedule σ. (4.8)
implies that in schedule ν on each machine there is at least one job with smaller
index than j∗ with completion time higher than the starting time of j∗ in νP .

In schedule νP , any job with smaller index than j∗ has starting time earlier than
the starting time of j∗. So there is at most one job on any machine, which has



38 4.3. Upper bounds on the price of anarchy for the Q||
∑
Cj game

smaller index than j∗ and has completion time greater than the starting time of
j∗. On the same machine as j∗ no job, that has smaller index than j∗, can have
completion time greater than the starting time of j∗. So, in schedule νP there
are at most m − 1 jobs, that have smaller index than j∗, but have completion
time greater than the starting time of j∗, in νP . But then, since j∗ is the job
with smallest index for which (4.7) holds, also in schedule ν there can be at
most m− 1 jobs, with smaller index than j∗ with completion time greater than
the starting time of j∗ in νP . So there can not be a job with smallest index for
which (4.8) holds. Thus there can not be any such job and (4.6) must hold.

4.3.4 Upper bounds on the price of anarchy

Combining the resulting bounds for the equilibrium solution and the optimal
solution directly gives us the following bounds on the price of anarchy.

From Lemma 3.6 and Lemma 4.4 we get Theorem 4.9.

Theorem 4.9. Let I be a Q||
∑
Cj game instance. Then

POA(I) ≤
∑m
i=1 si
sm

.

When we use Lemma 4.5 together with Lemma 3.6, we get Theorem 4.10.

Theorem 4.10. Let I be a Q||
∑
Cj game instance. Then

POA(I) ≤
∑n
j=1(n− j + 1)pj∑n

j=1 pj
.

Combining Lemma’s 4.6 and 4.8 results in Theorem 4.11.

Theorem 4.11. Let I be a Q||
∑
Cj game instance. Then

POA(I) ≤ sm.

Taking the result from Lemma 4.7, and applying Lemma 4.4 to (1) of the right
hand side of (4.5) and lemma 4.5 to (2) of the right hand side of (4.5), gives us
Theorem 4.12.

Theorem 4.12. Let I be a Q||
∑
Cj game instance. Then

POA(I) ≤ 1 +
(m− 1)sm∑m

i=1 si
.

Taking the result of Lemma 4.7 and applying 4.4 to both (1) and (2) of the right
hand side of (4.5), gives us Theorem 4.13.

Theorem 4.13. Let I be a Q||
∑
Cj game instance. Then

POA(I) ≤ 1 +
(m− 1)

∑n
j=1 pj∑n

j=1(n− j + 1)pj
.



Chapter 4. Upper bounds on the price of anarchy 39

For certain specific cases of uniformly related machine scheduling games, the
above theorems may give easy constant bounds. Theorem 4.9 and Theorem
4.11 applied to the two machine case result in Theorem 4.14.

Theorem 4.14. For two machine instances, the price of anarchy is at most
1
2 + 1

2

√
5 ≈ 1.6180.

Proof. According to Lemma 3.1, for any instance, we may assume that the
slowest machine has speed 1. Let the speed of the fast machine be s. Then, by
Theorem 4.9 and Theorem 4.11, the price of anarchy is bounded by min{s, s+1

s }.
Since s is a strictly increasing function and s+1

s is a strictly decreasing function,
the maximum of min{s, s+1

s } is attained at

s =
s+ 1

s
,

which is at

s =
1

2
+

1

2

√
5 ≈ 1.6180.

The next theorem is our main result. It uses a similar reasoning as explained
in section 2.6, where it is used to compute the price of anarchy from (α, β)-
smoothness. We also use schedules in which one job j is moved from one ma-
chine to another. The difference between our result and a standard smoothness
argument is that we need the properties of the optimal solution to prove our
bound. Therefore the result does not hold for two arbitrary schedules, but only
for an arbitrary schedule and the optimal solution. However the analysis of the
robust POA by Roughgarden in [Rou09] is still valid for this slightly less general
result, since it does not use that (2.2) holds for any schedule σ∗ only for the
specific case where σ∗ is an optimal schedule. So this result also provides upper
bounds on no-regret sequences, course correlated equilibriums and mixed Nash
equilibriums.

Theorem 4.15. The price of anarchy of uniformly related scheduling games
with sum of completion times objective and SPT local scheduling rule is no
greater than 3.

Proof. Let µ be the optimal schedule resulting from the MFT algorithm and let
ν be an equilibrium schedule. Furthermore let Nj(i) = |{j′|µj′ = i, j′ > j}| be
the number of jobs with higher index than job j on machine i in µ. Consider
the value labels of the machines just before the MFT algorithm placed j on µj .

The value label of a machine i at that moment is
Nj(i)+1

si
. For any two machines

i and i′ it is clear that

Nj(i)

si
≤ Nj(i

′) + 1

si′
∀i, i′, (4.9)

since either Nj(i) = 0 or the left hand side of (4.9) represents the value label
of machine i just before the last job with higher index than j was placed on i.



40 4.3. Upper bounds on the price of anarchy for the Q||
∑
Cj game

Since that job was not placed on i′ (4.9) must hold for any two machines i and
i′.

Let Ji(σ) be the set of jobs on machine i for any schedule σ. Now consider
an arbitrary schedule σ and let (µj , σ−j) be the schedule in which every job is
scheduled on the machine on which it is scheduled in σ, except for job j which
is scheduled on machine µj . We compute the completion times for each job j in
the corresponding schedule (µj , σ−j) and sum over all jobs that are on machine
i in µ, so all jobs j such that µj = i. We see that

∑
j∈Ji(µ)

Cj (µj , σ−j) =
∑

j∈Ji(µ)

pjsi +
∑

j′∈Ji(σ)
j′<j

pj′

si

 .

Every job j′ that is on i in the schedule σ contributes exactly Nj′(i) times its
processing time on i to this sum, so the above is equal to

=
∑

j∈Ji(µ)

pj
si

+
∑

j′∈Ji(σ)

Nj′(i) ·
pj′

si

≤
∑

j∈Ji(µ)

Cj(µ) +
∑

j′∈Ji(σ)

(Nj′(m) + 1) si
sm

· pj
′

si

=
∑

j∈Ji(µ)

Cj(µ) +
∑

j′∈Ji(σ)

Nj′(m) · pj
′

sm
+

∑
j′∈Ji(σ)

pj′

sm

≤
∑

j∈Ji(µ)

Cj(µ) +
∑

j′∈Ji(σ)

Nj′(m) · pj
′

sm
+

∑
j′∈Ji(σ)

Cj′(µ).

Summing over all machines gives

n∑
j=1

Cj (µj , σ−j) ≤ 2

n∑
j=1

Cj(µ) +

n∑
j=1

Nj(m) · pj
sm

.

Knowing (4.9), we can bound the last part by

n∑
j=1

Nj(m) · pj
sm
≤

n∑
j=1

(Nj(µj) + 1) · pj
sµj

=

n∑
j=1

Cj(µ).

Since we know that, for an equilibrium solution ν, and any σj ,

Cj (νj , ν−j) ≤ Cj (σj , ν−j) ,

also

n∑
j=1

Cj(ν) ≤
n∑
j=1

Cj (µj , ν−j) ≤ 3

n∑
j=1

Cj(µ),



Chapter 4. Upper bounds on the price of anarchy 41

for an optimal solution µ. From this we conclude that the price of anarchy is
no more than 3.





Chapter 5

Concluding remarks

In this thesis we proved that 3 is an upper bound on the price of anarchy for
unrelated machine scheduling with sum of completion times objective, Q||

∑
Cj .

We also constructed a set of instances which price of anarchy can be arbitrarily
close to e

e−1 ≈ 1.5820. For the case in which there are two machines we proved

an upper bound of 1+
√
5

2 ≈ 1.6180. We also found an instance on two machines

with price of anarchy equal to 3
2 ·

2+
√
3

3+
√
3
≈ 1.1830.

These results together with know results from Correa and Queyranne ([CQ10])
establish that the price of anarchy for Q||

∑
Cj is less than for R||

∑
wjCj .

Comparing with the results from Cole, Gkatzelis and Mirrokni we see that it is
possible that for both Q||

∑
Cj and R||

∑
Cj the price of anarchy is 3, but we

believe that for Q||
∑
Cj it will turn out to be strictly less than 3.

Since the price of anarchy for Q||
∑
Cj is the performance ratio of the SPT

algorithm for this scheduling model, our results also apply to that measure.

A few directions of future research are obvious. The first being to prove that the
price of anarchy for Q||

∑
Cj is strictly less than 3 and, as a logical extension, to

close the gap between the lower and the upper bound. Furthermore we haven’t
looked at the Q||

∑
wjCj model. It may be interesting to see whether or not the

proofs in this thesis, maybe in a slightly modified form, still hold when applied
to the more general model with weights.

43





Appendix A

Used notation

Throughout this thesis we use the following notations unless stated otherwise.

Notation Denotation
Cj(σ) Completion time of job j for some schedule σ
I Some uniformly related machine scheduling instance
J The set of jobs
ν An equilibrium schedule or equilibrium strategy pro-

file
µ An optimal solution schedule or optimal solution

strategy profile
m The number of machines
M The set of machines
n The number of jobs
NE(I) Highest possible objective value of any equilibrium

solution of instance I
OPT(I) Objective value of the optimal solution of instance I
pj Length of job j
POA(I) The price of anarchy of instance I
σ = (σj , σ−j) A schedule or strategy profile. Where σj is the ma-

chine chosen by job j and σ−j is the strategy profile
of all jobs but job j

si The speed of machine i

45





Appendix B

Proofs of analysis steps

Lemma B.1. If

A

B
≤ C

D
≤ C ′

D′
(B.1)

and

C < C ′,

then

A+ C

B +D
≤ A+ C ′

B +D′
. (B.2)

Moreover, if at least one of the inequalities from (B.1) is strict then (B.2) is
also strict.

Proof. From (B.1) we get

C

D
≤ C ′

D′

⇔ D′

D
≤ C ′

C

⇔ D′

D
− D

D
≤ C ′

C
− C

C

⇔ D′ −D
D

≤ C ′ − C
C

⇔ D′ −D
C ′ − C

≤ D

C

⇔ D′ −D
C ′ − C

≤ B

A

⇔ A(D′ −D) ≤ B(C ′ − C).

47



48

All steps are valid since C ′ − C > 0. Now suppose the theorem does not hold,
then

A+ C

B +D
>
A+ C ′

B +D′

⇔ (A+ C)(B +D′) > (A+ C ′)(B +D)

⇔ AB +BC +AD′ + CD′ > AB +BC ′ +AD + C ′D

⇒ BC +AD′ > BC ′ +AD

⇔ A(D′ −D) > B(C ′ − C),

which is a contradiction.

It is easy to see that the whole proof holds for strict inequality if either A
B < C

D

or C
D < C′

D′ .

The following corollary is an immediate consequence of lemma B.1.

Corollary B.2. If

A

B
≥ C

D
≥ C ′

D′
(B.3)

and

C > C ′,

then

A+ C

B +D
≤ A+ C ′

B +D′
. (B.4)

Moreover, if at least one of the inequalities from (B.3) is strict then (B.4) is
also strict.



Appendix C

Q||
∑
Cj is (2, 12)-smooth

In [CGM10], Cole, Gkatzelis and Mirrokni prove (2, 1/2)-smoothness for unre-
lated machines with weights and weighted sum of completion times objective.
Of course this automatically proves (2, 1/2)-smoothness for related machines as
well. Here we redo the proof for the Q||

∑
Cj model.

Theorem C.1. SPT local scheduling rule is (2,1/2)-smooth for related ma-
chines with sum of completion times objective. And therefore the price of anar-
chy is no more than 4.

The following proof follows the proof of Cole, Gkatzelis and Mirrokni [CGM10].

Proof. Let Si = {j|σj = i} and S∗i = {j|σ∗j = i} be the job sets of machine i for
the schedules σ and σ∗ respectively. If

∑
j∈S∗i

Cj(σ
∗
j , σ−j) ≤

1

2

∑
j∈Si

Cj(σ) + 2
∑
j∈S∗i

Cj(σ
∗) (C.1)

holds for every machine i, we are done. To prove (C.1) we first proof that the
inequality becomes tighter when all jobs in Si ∪ S∗i have equal length. Suppose
not all jobs in Si∪S∗i have equal length. Then let Maxi = {j ∈ Si∪S∗i |∀j′ ∈ Si∪
S∗i , pj ≥ pj′} be the set of jobs with maximal length from Si∪S∗i . Furthermore,
let Ji = Maxi ∩ Si and J∗i = Maxi ∩ S∗i be the maximum length jobs in Si and
S∗i respectively.

We decrease the length of all jobs in Maxi such that their length is equal to the
next longest jobs. This increases the cardinality of Maxi. Let p be this decrease
in length. If this decrease in processing time decreases the LHS of (C.1) no
more than it decreases the RHS, we can suffice with proving (C.1) for jobs with
equal length. So we want to prove:

49



50

∑
j∈J∗i

 p

si
+
∑
j′∈Ji
j′<j

p

si

 ≤ 1

2

∑
j∈Ji

∑
j′∈Ji
j′≤j

p

si
+ 2

∑
j∈J∗i

∑
j′∈J∗i
j′≤j

p

si
.

If we let A =
∑
j∈J∗i

1 and B =
∑
j∈Ji 1 and on the LHS sum over all j′ ∈ Ji

instead of only the j′ < j, we get

A+AB ≤ 1

2
· B

2 +B

2
+ 2 · A

2 +A

2
(C.2)

0 ≤ B2

4
+A2 −AB +

B

4

0 ≤
(
B

2
−A

)2

+
B

4
,

which is true for any A,B ≥ 0.

Now we may assume that all job lengths are equal. So we assume pj = 1 for all
j. Then (C.1) becomes:

∑
j∈S∗i

1 +
∑
j′∈Si

j′<j

1

 ≤ 1

2

∑
j∈Si

∑
j′∈Si

j′≤j

1 + 2
∑
j∈S∗i

∑
j′∈S∗i
j′≤j

1.

On the LHS we sum over all j′ ∈ Ji again. Then, noticing that Si = Ji and
S∗i = J∗i , we can rewrite the above as

A+AB ≤ 1

2
· B

2 +B

2
+ 2 · A

2 +A

2
,

which we already know is true for any A,B ≥ 0. This proves (C.1). If we now
sum over all machines (C.1) becomes

n∑
j=1

Cj(σ
∗
j , σ−j) ≤

1

2

n∑
j=1

Cj(σ) + 2

n∑
j=1

Cj(σ
∗),

for any two schedules σ and σ∗. This proofs (2,1/2)-smooth for related machines
with sum of completion times objective.

From theorem C.1 it follows that:

Theorem C.2. The robust price of anarchy of uniformly related scheduling
games with sum of completion times objective and SPT local scheduling rule is
no greater than 4.



Bibliography

[CGM10] Richard Cole, Vasilis Gkatzelis, and Vahab Mirrokni. Coordination
mechanisms for weighted sum of completion times. NYU CIMS
Technical Report: TR2010-930, 2010.

[CKN04] G. Christodoulou, E. Koutsoupias, and A. Nanavati. Coordination
mechanisms. Automata, Languages and Programming, pages 45–
56, 2004.

[CQ10] J.R. Correa and M. Queyranne. Efficiency of Equilibria in Re-
stricted Uniform Machine Scheduling with MINSUM Social Cost.
Manuscript, 2010.

[GLLRK79] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan.
Optimization and approximation in deterministic sequencing and
scheduling: A survey. Annals of Discrete Mathematics, 5(2):287–
326, 1979.

[HMU07] Birgit Heydenreich, Rudolf Müller, and Marc Uetz. Games and
mechanism design in machine scheduling - An introduction. Pro-
duction and Operations Management, 16(4):437–454, 2007.

[HS76] Ellis Horowitz and Sartaj Sahni. Exact and approximate algo-
rithms for scheduling nonidentical processors. J. Assoc. Comput.
Mach., 23(2):317–327, 1976.

[IK77] O.H. Ibarra and C.E. Kim. Heuristic algorithms for scheduling
independent tasks on nonidentical processors. Journal of the ACM,
24(2):289, 1977.

[ILMS09] Nicole Immorlica, Li Li, Vahab S. Mirrokni, and Andreas S. Schulz.
Coordination mechanisms for selfish scheduling. Theoret. Comput.
Sci., 410(17):1589–1598, 2009.

[Nas50] J.F. Nash. Equilibrium points in n-person games. Proceedings of
the National Academy of Sciences of the United States of America,
36(1):48–49, 1950.

[Pap01] C. Papadimitriou. Algorithms, games, and the internet. In Pro-
ceedings of the thirty-third annual ACM symposium on Theory of
Computing, pages 749–753. ACM, 2001.

51



52 Bibliography

[Pin08] M. Pinedo. Scheduling: theory, algorithms, and systems. Springer
Verlag, 2008.

[Rou09] Tim Roughgarden. Intrinsic robustness of the price of anarchy.
In Proceedings of the 41st annual ACM symposium on Theory of
computing, pages 513–522, New York, NY, USA, 2009. ACM.

[Smi56] Wayne E. Smith. Various optimizers for single-stage production.
Naval Res. Logist. Quart., 3:59–66, 1956.


