
Meeting deadlines: How much speed suffices??

S. Anand1, Naveen Garg1, and Nicole Megow2

1 Indian Institute of Technology Delhi, India.
anand.42@gmail.com, naveen@cse.iitd.ac.in

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany.
nmegow@mpi-inf.mpg.de

Abstract. We consider the online problem of scheduling real-time jobs with hard
deadlines on m parallel machines. Each job has a processing time and a deadline,
and the objective is to schedule jobs so that they complete before their deadline.
It is known that even when the instance is feasible it may not be possible to meet
all deadlines when jobs arrive online over time. We therefore consider the setting
when the algorithm has available machines with speed s > 1.
We present a new online algorithm that finds a feasible schedule on machines of
speed e/(e − 1) ≈ 1.58 for any instance that is feasible on unit speed machines.
This improves on the previously best known result which requires a speed of 2 −
2/(m + 1). Our algorithm only uses the relative order of job deadlines and is
oblivious of the actual deadline values. It was shown earlier that the minimum
speed required for such algorithms is e/(e− 1), and thus, our analysis is tight. We
also show that our new algorithm outperforms two other well-known algorithms
by giving the first lower bounds on their minimum speed requirement.

1 Introduction

We consider the problem of scheduling real-time jobs with hard deadlines on multiple
machines. In this problem, a set of jobs J = {1, . . . , n}must be scheduled on m identical
parallel machines, each of which can process at most one job at the time. A job j ∈ J
arrives at its release date r j ∈ N, has processing time p j ∈ N, and deadline d j ∈ N. It can
be processed on any of the m machines. It can also be preempted and restarted, either on
the same machine or a different machine. An instance is called feasible, if there exists a
schedule such that no job misses its deadline. An algorithm is optimal if it can schedule
every feasible instance so that all deadlines are met. Given a feasible instance, a feasible
schedule can be computed by solving a maximum flow problem [4].

In this paper, we consider the online model, in which an algorithm learns about
a job j only at its release date r j. Several algorithms are known to be optimal on a
single machine [3]. But on multiple machines, the online problem is much more difficult
than its offline counterpart. In fact, for m ≥ 2, there does not exist any optimal online
algorithm [3]. To overcome this hardness, Phillips, Stein, Torng, and Wein [8] proposed
the use of resource augmentation [5]: Given an online algorithm A we determine the
speed s ≥ 1 such that A is optimal on m speed-s processors for any instance that is
feasible for m processors of unit speed. We are interested in the smallest s for which

? Research supported by the Indo-German Max Planck Center for Computer Science (IMPECS).

there is an optimal online algorithm. It is known, that any optimal online algorithm
needs speed at least 6/5 [8].

An algorithm is deadline ordered if the schedule it yields depends only on the rela-
tive ordering of the deadlines of the jobs and not on the actual deadline values. A well-
known example of a deadline ordered algorithm is Earliest Deadline First (EDF) which
at any time schedules the m jobs with the earliest deadline. EDF is optimal on a single
machine [2]. On m machines, speed s = 2−1/m is necessary and sufficient to guarantee
its optimality [8]. Since its introduction more than a decade ago, this upper bound on
the speed requirement for online algorithms has been improved only marginally. Lam
and To [6] proposed a more complex deadline ordered algorithm with a speed require-
ment of 2 − 2/(m + 1). They also showed that any deadline ordered online algorithm
for m machines needs a speed of at least

αm :=
1

1 −
(
1 − 1

m

)m .

For m = 2 this quantity equals 4/3, matching the currently best known upper bound [6],
and for arbitrary m it is at most e/(e − 1) ≈ 1.58.

Our main result (Section 3) is a new deadline ordered online algorithm which is op-
timal with speed αm. Both, the algorithm and its analysis, build on a simple and elegant
online estimate of an optimal schedule (Section 2), proposed in [6]. The matching lower
bound in [6] proves that αm is the exact speed requirement for our algorithm.

We also consider two well-known non-deadline ordered algorithms and provide
lower bounds on the speed necessary for them to schedule a feasible instance. Let p j(t)
denote the remaining processing time of job j at time t ≥ r j. The laxity of j at time t
is defined as ` j(t) = d j − t − p j(t). The algorithm Least Laxity First (LLF) schedules
at any point in time m jobs with minimum laxity among the available jobs. LLF is also
optimal on a single machine [3], and more generally, it is optimal on m machines when
running at speed 2 − 1/m [8]. In this paper we provide a lower bound on the speed re-
quired (Section 4) by demonstrating a feasible instance for which LLF requires a speed

s ≥
1 +
√

1 + 4x2

2x
with x =

m
m − 1

.

This quantity is (1 +
√

17)/4 ≈ 1.281, for m = 2, and approaches the golden ratio (1 +√
5)/2 ≈ 1.618, when m goes to infinity. To the best of our knowledge, this is the first

lower bound (beyond the general one) on the speed necessary for LLF. It also shows
that our new deadline ordered algorithm outperforms LLF: Indeed, for m ≥ 7 the lower
bound for LLF exceeds the upper bound on the speed required by our new algorithm.

An algorithm that tries to combine features of EDF and LLF is Earliest Deadline
until Zero Laxity (EDZL) introduced in [1]. At any point in time, EDZL gives highest
priority to jobs which cannot be delayed further, i.e, have zero laxity, and other jobs are
scheduled in EDF order. This algorithm dominates EDF in the sense that any instance
that is schedulable by EDF, is also schedulable by EDZL, whereas the opposite is not
true [1,7]. However, it remained open if EDZL is optimal for speed less than 2−1/m, the
speed necessary for EDF. In Section 5, we answer this question negatively by providing
a feasible instance on which EDZL fails for speed less than 2 − 1/m.

2

2 The yardstick schedule

A key challenge in designing an online algorithm for the deadline scheduling problem
is to obtain an estimate of an optimal schedule. Clearly, at any time, we can compute
an optimal schedule for the currently known partial instance by solving a maximum
flow problem [4]. However, these optimal schedules may differ fundamentally, and it
is unclear how an online algorithm can use this information as it cannot change the
decisions from the past. Intuitively, we need a less powerful algorithm that computes a
simpler optimal solution under some relaxed assumptions. Lam and To [6] proposed a
simple and elegant schedule called yardstick, which can be constructed online. It has the
property that all jobs meet their deadlines but it may not be feasible as it processes a job
sometimes simultaneously on multiple machines. The main idea of yardstick is to allow
parallelization of a job only if it is underworked, i.e., the total amount of processing
done on it is smaller than the time period since it was released. We will use yardstick as
a reference in the design and analysis of our feasible online algorithm.

The yardstick schedule is constructed as follows. Whenever a new job is released,
we consider all unfinished available jobs in increasing order of deadlines and schedule
their remaining processing time on the m machines of unit speed. When scheduling
job j, we consider the earliest time at which some machine is available and schedule
the job on all available machines till it is not underworked any more. Once the total
processing done on j equals the time it has been available, we schedule the job on the
lowest numbered machine (assuming an arbitrary numbering on the machines) that is
available.

Since the yardstick schedule may run a job simultaneously on multiple machines, it
does not give a feasible schedule. However, it has the following crucial property.

Lemma 1 ([6]). If a scheduling instance is feasible, the yardstick schedule completes
all jobs before their deadlines.

In general, it is not necessary to specify for each job the particular machine by which
it is processed, but in our case it makes the analysis simpler. In particular, yardstick
distributes processing volume in a staircase profile: in any time slot, machine i′ > i is
used only if machine i is also occupied, and between any two release dates the number
of machines used is not increasing over time; see Figure 1.

The online algorithm that we present in the following section will at any release
time t make reference to the part of the yardstick schedule after time t. This part has a
non-increasing staircase profile. Given some (release) time t, let all jobs that have been
released by t be indexed in increasing order of deadlines. Recall that this is the order in
which yardstick considers jobs. Let Y j denote the yardstick schedule for jobs 1, 2, . . . , j
starting at time t. Let y j

1, y
j
2, . . . , y

j
i , . . . be the time points at which there is a step (the

total work assigned to the m machines changes) in Y j. In particular, let y j
1 ≥ t be the first

point in time when not all machines are used to their full capacity. Further, let x j denote
the last point in time at which job j is running on multiple machines simultaneously in
the yardstick schedule, and let f j (f j > x j) denote the time that it finishes processing (see
Figure 1). For the sake of readibility we omit in our notation the parameter t since it
will always be clear from the context.

The yardstick schedule for jobs released by time t has the following properties.

3

f2 f3 f5f1f4 f6x1 = x2
= x3 = x4

x5 x6

3

4

3

32

1 5 6

3

4

3

32

1

4 5

5 6

6

54

6

x5 x6

Fig. 1. The yardstick schedule (top) and our schedule (bottom).

(i) If j < k, then x j < xk although f j may be greater than fk.
(ii) Since yardstick runs a job j on multiple machines simultaneously only if it is un-

derworked, we have f j ≥ r j + p j.
(iii) Since all machines are occupied for all times before x j, we have y j

1 ≥ x j.
(iv) In going from Y j−1 to Y j, all steps before x j disappear and new steps get created

at x j and f j (if they do not exist).

3 A best possible deadline ordered online algorithm

We propose a new deadline ordered online algorithm and determine the speed that is
sufficient to guarantee that it is optimal.

3.1 Description of the algorithm

Our algorithm mimics the yardstick schedule to a large extent. In particular, it will
finish every job by the same time as in the yardstick schedule, which is by Lemma 1
before its deadline. Moreover, our algorithm will have processed at any time at least as
much work of any job as the yardstick schedule. Our algorithm will keep up with the
yardstick schedule by using faster machines instead of parallelizing jobs. The key idea
is that in time periods, in which yardstick schedules a job for some positive amount, our
algorithm does not process more than that. In particular when yardstick processes a job
which is not underworked and hence uses only one machine, our schedule too processes
only one unit of the job in one time unit even though the additional speed would allow
for more.

The algorithm works as follows: At any time t when a job is released, we recom-
pute the yardstick schedule. (This is done completely independent of our current online

4

schedule.) Then we consider the set of available unfinished jobs, Jt, in our schedule.
We consider jobs in Jt in increasing order of deadlines and assign for each job j ∈ Jt its
remaining processing time p j(t) at time t in our schedule as follows:

– We schedule one unit of work in each unit-length time slot between x j and f j.
– We assign the remaining processing time, p j(t) − (f j − x j), to the slots before x j

with α units assigned to each slot between s j := x j − (p j(t) − f j + x j)/α and x j,
where α ∈ R, 1 ≤ α < 2, is a the full speed of the machines.

In this manner we determine for each time slot (after t, as we prove below) the set of
jobs to be processed and the extent to which they have to be processed. Notice that we
do not allocate particular machines to the jobs. However, the algorithm never assigns
more work of an individual job to a time slot than can be processed sequentially. Thus,
when assuming integral job parameters and allowing preemption at any time, a round
robin like processing yields a schedule with each job using at most one machine at the
time and no two jobs using the same machine simultaneously.

Consider the workload profile computed by our algorithm. For the analysis we de-
sire that it has a staircase profile. However the procedure described so far may not
satisfy this. In the following we show how to correct this.

At any (release) time t, let the jobs in Jt be indexed in increasing order of dead-
lines. Note that for both online schedules, yardstick and our schedule, we consider only
the part of the schedules after time t, and that both schedules are built by consider-
ing jobs (not necessarily the same ones) in the order of increasing deadlines. Similarly
as for yardstick we define A j to be our schedule for jobs 1, 2, . . . , j ∈ Jt after time t.
Let a j

1, a
j
2, . . . , a

j
i , . . . be the time points at which there is a step in A j. Let a j

1 ≥ t be the
first point in time when not all machines are used to their full capacity after time t.

Our schedule may not have a staircase profile after the reassignment at some time t,
because s j for some job j may lie between a j−1

i and a j−1
i+1 . In that case we distribute

the part of j scheduled in the interval [s j, a
j−1
i+1] uniformly over the interval [a j−1

i , a j−1
i+1].

This however, may not suffice since the height of the profile in the interval [a j−1
i+1 , a

j−1
i+2]

might exceed the height of the profile in some of the preceding intervals. If this is the
case, we move a suitable amount of job j from [a j−1

i+1 , a
j−1
i+2] to the interval preceding it

so that these two intervals have the same height in A j. This process is repeated until we
get a staircase profile for A j. Note that as a consequence of this operation we will be
scheduling at most α units of job j in each time slot preceding a j−1

i+2 .

3.2 Analysis of the algorithm

In this section we show the following main result.

Theorem 1. The speed αm = (1 − (1 − 1/m)m)−1 is necessary and sufficient for our
algorithm to schedule each job feasibly before its deadline.

We first show the correctness of our algorithm with respect to time feasibility.

Lemma 2. If an instance is feasible, then for any job j our algorithm assigns p j units
to feasible time slots between r j and d j. In particular, at any time t ≥ r j it (re-)assigns
the remaining processing requirement p j(t) to time slots not earlier than t.

5

Proof. First, consider our algorithm without the correction step achieving a staircase
profile. At time r j our algorithm assigns job j to time slots between s j and f j. By
Lemma 1, f j ≤ d j. The starting time s j = x j − (p j − f j + x j)/α is at least f j − p j ≥ r j

for α ≥ 1.
Consider some release time t > r j and the yardstick schedule with the last moments

of parallelization x j (resp. x′j) and the finishing times f j (resp. f ′j) of j before (resp. after)
rescheduling. Observe that x′j ≥ x j and f ′j ≥ f j. The reason is that yardstick has to
schedule more jobs than before and maintains the same scheduling order depending
only on deadlines. Our algorithm reassigns the remaining work p j(t) of j to [s′j, f ′j].
Since this amount has been scheduled in [t, f j] before, with at most α units per time
slot in [t, f j] and one unit per time slot in [x j, f j], our algorithm reassigns it now to later
time slots if f ′j > f j and to a larger amount per time slot if x′j > x j. Thus, the start time
does not decrease, i.e., s′j ≥ t. Finally by Lemma 1, we have again f ′j ≤ d j since the
instance is feasible.

We have shown that s j ≥ t before the correction step. Now suppose that we must
start a job earlier than s j to obtain a staircase profile. Since a j−1

i ≥ t, the proof still
holds. ut

To prove that our algorithm never assigns more work to a time slot than it can pro-
cess on m fast machines, we proceed as follows. First, we show that at any time the
remaining processing time of any job in our schedule is not more than this quantity in
the yardstick schedule. Then, we show that at any point in time, our algorithm can dis-
tribute the remaining processing time that any job has in the yardstick schedule without
exceeding the processing capacity under speed αm.

Lemma 3. A j is identical to Y j for all t′ ≥ x j.

Proof. We prove this by induction on j. Suppose the statement is true for all j ≤ k.
Then Yk and Ak are identical for all t′ after xk and, since xk+1 ≥ xk, for all t′ ≥ xk+1. The
job k + 1 is scheduled for one unit in each time slot between xk+1 and fk+1 in both Ak+1

and Yk+1. This implies both schedules are identical after xk+1. ut

Lemma 4. For any job j and time t′ ≤ f j, the amount of processing of j remaining at
time t′ in schedule A j is less than that remaining at time t′ in schedule Y j.

Proof. Since schedules A j and Y j are identical after x j (Lemma 3), the remaining pro-
cessing time of j at any time t′ ≥ x j is the same in both schedules.

Since in Y j, job j is scheduled only after time x j−1, for all times t′ ≤ x j−1 the
remaining processing time of j in Y j is p j(t) and this is, trivially, at least as large as the
remaining processing time of j at any time t′ in A j. Hence we only need to prove the
statement for t′ in the interval (x j−1, x j).

In Y j one or more units of j are scheduled in each time slot between x j−1 and x j.
We now consider two cases.

1. At least 2 units of j are scheduled in each slot between x j−1 and x j in Y j. However,
in A j at most α < 2 units of j are scheduled in each slot between x j−1 and x j. Hence
for any time t′ in the interval (x j−1, x j), the remaining processing time of j in Y j

exceeds that of j in A j.

6

2. Only one unit of j is scheduled in Y j for some slots in (x j−1, x j). Since Y j−1 has a
staircase profile, for all slots between x j−1 = y j−1

1 and y j−1
2 , j must be scheduled for

only one unit, while for slots between y j−1
2 and x j, j must be scheduled for at least

2 units.
By the argument in previous case, it follows that for all time t′ ≥ y j−1

2 , the remain-
ing processing time of j in Y j exceeds that of j in A j. This implies that before
time y j−1

2 , job j is processed to a larger extent in A j than in Y j. From our procedure
for scheduling job j it follows that we schedule j for β units in each time slot in
the interval (y j−1

1 , y j−1
2), where 1 ≤ β ≤ α. This in turn implies that the amount of j

processed before t′, t′ ∈ (y j−1
1 , y j−1

2), is larger in A j than in Y j which proves the
lemma. ut

We discuss some more properties of our schedule with respect to the yardstick
schedule. We first argue that in going from Ak to Ak+1 no new steps are created be-
fore xk+1.

Lemma 5. For every i where ak+1
i < xk+1 there is a p such that ak+1

i = ak
p.

Proof. The proof follows from the way we schedule job k + 1. Before time xk+1 we
schedule job k + 1 to an extent of α units in a time slot. Besides, when we redistribute
the job over consecutive steps, then no new step is created. ut

We use the above lemma for proving the following lemma which will be crucial for our
analysis.

Lemma 6. Consider a job j. In any schedule Ak, k ≥ j, and for any i such that ak
i ≤ x j,

either job j begins at or after ak
i or it is the case that in all slots between ak

i and x j, α
units of j is scheduled.

Proof. Suppose in the schedule A j, job j begins at time a j
p. By our method of schedul-

ing j it follows that in all slots between a j
p+1 and x j, α units of j is scheduled. Thus for

all i ≤ p it is the case that job j begins at or after a j
i while for i > p, all slots between a j

i
and x j have α units of j.

When we go from schedule A j to A j+1 then, by Lemma 5, we do not create any new
steps before x j+1. Since x j ≤ x j+1 no new steps are created before x j either. Further,
we do not modify the schedule of job j and so the lemma continues to hold for the
schedule A j+1 and in a similar manner for all subsequent schedules. ut

Now, we are ready to show the correctness of our algorithm with respect to the
processing capacity when given speed α = αm. To do so, consider any release time t
and the set of available unfinished jobs and their remaining processing times in the
yardstick schedule. We show that our algorithm applied to these jobs assigns always at
most αm units to time slots after t. By Lemma 4 this is only more than our algorithm
actually has to schedule.

For the sake of contradiction, assume that this is not the case and let k be the first
job for which we fail. This implies that the height of the first step in Ak exceeds αm.
In this proof we will assume that t = 0. It is straightforward to extend the argument

7

for arbitrary t. Let p j(t) = p j be the remaining processing time of j in the yardstick
schedule.

Let ak
1 = z. Consider the set of jobs scheduled in Ak. We will partition this set into

four disjoint subsets. Define B to be the set of jobs, j, for which f j < z and C as the set
of jobs, j, for which x j ≤ z < f j. The remaining jobs are the ones for which z ≤ x j and
these we partition into two sets; D is the set of those jobs which begin at or after z in our
schedule while E is the set of jobs which begin before z. Counting the total processing
time of all jobs in two different ways we get∑

j∈B∪C∪D∪E

p j > mαz +
∑
j∈C

(f j − z) +
∑
j∈D

p j +
∑
j∈E

((f j − x j) + α(x j − z)).

Note that since a job j ∈ E begins before z = ak
1 in the schedule Ak, by virtue of

Lemma 6, α units of j would have been scheduled in each time slot between z and x j.
Rearranging terms now yields∑

j∈B

p j +
∑
j∈C

(p j − f j + z) +
∑
j∈E

(p j − f j + x j) > α(mz +
∑
j∈E

(x j − z))

If α was chosen such that the above inequality is not satisfied, then this would imply
that our algorithm never uses more machine capacity than is available. Thus, chosing
an α with

α >

∑
j∈B p j +

∑
j∈C(p j − f j + z) +

∑
j∈E(p j − f j + x j)

mz +
∑

j∈E(x j − z)

guarantees that our algorithm finds a feasible schedule for all jobs when given m ma-
chines of speed α. In the following we determine the smallest α that satisfies this con-
dition.

Observe that
∑

j∈B p j +
∑

j∈C(p j − f j + z) < mz.
For j ∈ E define b j = (p j − f j + x j)/z and a j = x j/z. Then

0 ≤ b j (1)
b j ≤ a j (2)
a j ≥ 1 (3)

Let us number the jobs in E from 1 to k = |E| ≤ m in the order of their deadlines. Then
for 1 ≤ j ≤ k,

a j ≥ a j−1 + b j/m (4)

where a0 = 1.
Hence it suffices to choose α as the optimal value of the optimization problem

max
ai,bi,1≤i≤k

 m +
∑k

i=1 bi

m − k +
∑k

i=1 ai

∣∣∣∣∣ (1) − (4)

 . (P)

Consider an optimal assignment of bi, ai, 1 ≤ i ≤ k for (P). It has the following property.

Lemma 7. For every 1 ≤ i ≤ k, ai = ai−1 + bi/m and either bi = ai or bi = 0.

8

Proof. Let p be the largest index for which the statement of the lemma is not true. For
every i ≥ p we will determine an εi, δi so that the solution remains feasible when for
all i ≥ p we set

ai ← ai + εi

bi ← bi + δi

and also when for all i ≥ p we set

ai ← ai − εi

bi ← bi − δi

If the original solution had value X/Y , then the first solution has value (X + ε)/(Y + δ),
where ε =

∑k
i=p εi and δ =

∑k
i=p δi, while the second solution has value (X−ε)/(Y−δ). If

one of these solutions has value greater than that of the original solution then we would
have obtained a contradiction.

Otherwise, both solutions have the same value. Our choice of εi, δi will be such that
the condition of the lemma remains true for all i > p in both solutions built. Further, in
one of the two solutions we will satisfy both conditions for index p (if one was satisfied
to begin with) or satisfy one of the conditions for index p (if none were satisfied to
begin with). Thus by picking one of these two solutions, which, has the same value as
our original solution we get closer to proving the lemma for all indices.

To determine εi, δi for i = p we consider three cases.

ap > ap−1 + bp/m, bp < ap : Then δp = 0 and εp = min(ap − bp, ap − (ap−1 − bp/m)).
ap > ap−1 + bp/m, bp = ap : Then ap > map−1/(m − 1) and hence δp = εp = ap −

map−1/(m − 1).
ap = ap−1 + bp/m, 0 < bp < ap : Then δp = min(bp, ap − bp) and εp = δp/m.

The values for i ≥ p + 1 are determined by considering the following cases

bi = ai : Then ai = ai−1 + bi/m = ai−1 + ai/m which implies ai = mai−1/(m − 1).
Hence, δi = εi = mεi−1/(m − 1).

bi = 0 : Then δi = 0 and εi = εi−1. ut

Let i1 < i2 < · · · < ir be the indices, i for which bi = ai. It can be easily shown by
induction that a0 = ai = 1, i < i1, and ai1 = m/(m−1) = ai2−1, ai2 = (m/(m−1))2 = ai3−1,
and air = (m/(m − 1))r. Thus,

k∑
i=1

bi =

r∑
i=1

(m
m − 1

)i
.

In an optimal solution to (P), the sum
∑k

i=1 ai is minimized. This is the case, when the
indices for which bi = 0 are the lowest ones, i.e. bi = 0, 1 ≤ k− r. Then a0 = a1 = · · · =

ak−r = 1, and thus,
k∑

i=1

ai = (k − r) +

r∑
i=1

(m
m − 1

)i
.

9

Hence the value of this solution is

m +
∑r

i=1

(
m

m−1

)i

m − k + k − r +
∑r

i=1

(
m

m−1

)i =
m

(
m

m−1

)r

m
(

m
m−1

)r
− r

=
m

m − r
(

m−1
m

)r .

Since r ≤ k ≤ m and r(1 − 1/m)r < m(1 − 1/m)m, the above ratio is at most

αm =
1

1 − (1 − 1/m)m ,

and this is our choice of α. For m = 2 this quantity equals 4/3 and for large m, α is
at most e/(e − 1), since (1 − 1/m)m < e−1. This upper bound combined with the lower
bound on the speed requirement of any deadline ordered online algorithm [6] concludes
the proof of our main result Theorem 1.

4 A lower bound for LLF

We give a lower bound on the speed that is necessary for LLF to schedule feasible
instances. We first give a necessary condition.

Recall that ` j(t) is the laxity of job j at time t, and p j(t) denotes the remaining
processing time of j at this time.

Lemma 8. Let 1 ≤ s ≤ 2 − 1/m be the speed required for LLF to be optimal. Consider
an instance that is feasible for m unit speed machines and a time t by which all jobs
released before t could have completed in a feasible schedule. If job j has not completed
by time t in LLF on m speed-s machines, then

` j(t) ≥
p j(t)

s(s − 1)
, (5)

Proof. Suppose that LLF does not satisfy condition (5) for some job j at time t. We
show how to augment the current set of jobs with blocking jobs such that LLF will miss
the deadline d j or cannot schedule the blocking jobs feasibly. A set of blocking jobs
consists of m jobs each having the same size and release time and 0 laxity.

Define the relative laxity `r
j(t) of a job as the ratio ` j(t)/p j(t). We first show that if

condition (5) is not satisfied, we can decrease the relative laxity arbitrarily. When the
relative laxity of the job is sufficiently small, we release m blocking jobs so that no
matter how we schedule the jobs, we cannot finish all the jobs by their deadlines.

The procedure for decreasing the relative laxity of some job j is as follows. It is no
loss of generality to assume that p j(t) = 1. Since condition (5) is not satisfied, `r

j(t) =

` j(t) = k
s(s−1) with k < 1. Now we release m blocking jobs each of size q. These jobs

will take up q/s time on each machine in the speed-s LLF schedule leaving q−q/s time
to process job j. Thus, at time t′ = t + q, we will have ` j(t′) = ` j(t) − q/s and p j(t′) =

p j(t)−s(q−q/s) whereas an optimal algorithm could have finished all the blocking jobs.
We choose q such that the new relative laxity ` j(t′)/p j(t′) is half the original relative
laxity ` j(t)/1, that is, q = 2−k

k(s−1) .

10

Note that we do not release big blocking jobs of size q at one time. We release many
small blocking jobs, m at a time, so that each job has laxity less than ` j(t′). The total
size of these small jobs scheduled on a machine is q. This way we can ensure that j is
never scheduled in parallel with the blocking jobs. Once these m jobs are finished in the
optimal schedule, we release another batch of m blocking jobs.

With the above procedure, we can halve the relative laxity of job j. Repeating this
process, we can reduce the relative laxity arbitrarily. Once the relative laxity `r

j(t
′′) is

less than p j(t′′)/2m, we release m blocking jobs of size p j(t′′). It is easy to see that these
jobs cannot be scheduled within their deadlines. ut

Theorem 2. Let x = m
m−1 . LLF is not optimal for speed less than

1 +
√

1 + 4x2

2x
,

which is (1 +
√

17)/4 ≈ 1.281 for m = 2, and tends to (1 +
√

5)/2 ≈ 1.618 for m→ ∞.

Proof. Let 1 ≤ s < 2−1/m be the speed of the machines available to LLF. We construct
a worst case instance consisting of main and blocking jobs. We have m + 1 main jobs
with r j = 0, p j = 1, d j = m

m−1 , for j = 1, . . . ,m, and rm+1 = 0, pm+1 = m
m−1 , dm+1 =(

1 + 1
s

) (
m

m−1

)
.

There is a schedule S on m speed-1 machines in which the main jobs are completed
by time t = m

m−1 . Indeed, start the long job k at time 0 and schedule all other jobs in a
round robin fashion on the remaining m − 1 machines.

In contrast, LLF with speed s schedules the small jobs in a round robin fashion on
all m machines and completes them by time t′ = 1/s. Only then the long job begins
processing. To see that, observe that the laxity of the long job `m+1(t′′) ≥ `1(t′′) =

m
m−1−

1
s for any t′′ ≤ t′. The remaining processing time for job m+1 at time t = m/(m−1)

is pm+1(t) = m
m−1 −

(
m

m−1 − 1/s
)

s = 1 −
(

m
m−1

)
(s − 1). The lower bound on the speed

requirement for LLF now follows directly from Lemma 8. ut

5 A lower bound for EDZL

We show that the speed requirement of EDZL to guarantee an optimal schedule for a
feasible instance is no less than the one for EDF.

Theorem 3. EDZL is not optimal for speed s = 2 − 1
m − ε for any ε > 0.

Proof. We first give the proof for m = 2 and show later how this can be generalized
to arbitrary m > 2. At time t = 0, three jobs are released: two of them have size L
and deadline 2L. The remaining job (call this job j) has size 2L and deadline 3L/s.
At t = 2L, two jobs of size 1 and deadline 2L + 1 are released. Assume that L � 1 so
that 3L/s > xL + 1.

We first note that there is a feasible schedule for this instance. Schedule job j on one
machine and the other jobs in a round robin fashion on the other machine. All the jobs
are finished by time 2L. Then schedule the newly arrived jobs on separate machines.

11

EDZL will schedule the size L jobs on 2 machines till time L/s. At t = L/s, the
size L jobs will be finished and job j has zero laxity. Since we assume that L � 1,
one machine must be assigned to this job for the remainder of the schedule. Clearly the
newly released jobs at time t = 2L cannot both be scheduled on the other machine. Thus
EDZL is not optimal for s = 3/2 − ε for m = 2.

For general m, let x = m
m−1 . We release m + 1 jobs at time 0 with one job of size xL1

and deadline (x + 1)L1/s and the remaining m jobs of size L1 and deadline xL1. Similar
to the above analysis, at time t = xL1, all jobs will be finished by an optimal offline
schedule while there is one tight job in EDZL. We choose L1 large enough so that one
machine is tied up to this job for the rest of the schedule. We repeat the construction
with m−1 machines with some large enough L2 and continue until we reach the case m =

2 in which a job will fail its deadline. ut

6 Concluding remarks

As our main result we have introduced a new online algorithm which is optimal for
speed αm ≤ e/(e− 1) ≈ 1.58. This is the first significant improvement since the seminal
results in [8]. Our algorithm is best possible in the class of deadline ordered algorithms
with respect to speed resource augmentation. Nevertheless, this does not generally rule
out online algorithms that are optimal for less speed. However, we showed that our
algorithm outperforms all algorithms, deadline ordered and non-deadline ordered, for
which provable upper bounds are known in the literature.

References

1. S. Cho, S. K. Lee, S. Ahn, and K.-J. Lin. Efficient real-time scheduling algorithms for
multiprocessor systems. IEICE Transactions on Communications, E85-B(12):2859–2867,
2002.

2. M. L. Dertouzos. Control robotics: The procedural control of physical processes. In IFIP
Congress, pages 807–813, 1974.

3. M. L. Dertouzos and A. K. Mok. Multiprocessor on-line scheduling of hard-real-time tasks.
IEEE Transactions on Software Engineering, 15(12):1497–1506, 1989.

4. W. A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly,
21(1):177–185, 1974.

5. B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the
ACM, 47(4):617–643, 2000.

6. T. W. Lam and K.-K. To. Trade-offs between speed and processor in hard-deadline schedul-
ing. In Proc. of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 623–632, 1999.

7. M. Park, S. Han, H. Kim, S. Cho, and Y. Cho. Comparison of deadline-based scheduling
algorithms for periodic real-time tasks on multiprocessor. IEICE Transactions, 88-D(3):658–
661, 2005.

8. C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via resource
augmentation. Algorithmica, 32(2):163–200, 2002.

12

