

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2017 Society for Industrial and Applied Mathematics
Vol. 46, No. 4, pp. 1217–1240

RANDOMIZATION HELPS COMPUTING A MINIMUM SPANNING
TREE UNDER UNCERTAINTY∗

NICOLE MEGOW† , JULIE MEIßNER‡ , AND MARTIN SKUTELLA‡

Abstract. Given a graph with “uncertainty intervals” on the edges, we want to identify a
minimum spanning tree by querying some edges for their exact edge weights which lie in the given
uncertainty intervals. Our objective is to minimize the number of edge queries. It is known that there
is a deterministic algorithm with best possible competitive ratio 2 [T. Erlebach, et al., in Proceedings
of STACS, Schloss Dagstuhl, Dagstuhl, Germany, 2008, pp. 277–288]. Our main result is a random-
ized algorithm with expected competitive ratio 1 + 1/

√
2 ≈ 1.707, solving the long-standing open

problem of whether an expected competitive ratio strictly less than 2 can be achieved [T. Erlebach
and M. Hoffmann, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, 116 (2015)]. We also present
novel results for various extensions, including arbitrary matroids and more general querying models.

Key words. online algorithms, competitive analysis, minimum spanning tree, randomized
algorithms

AMS subject classifications. 68W20, 68W27, 68R10

DOI. 10.1137/16M1088375

1. Introduction. Uncertainty in the input data is an omnipresent issue in most
real world planning processes. The quality of solutions for optimization problems
with uncertain input data crucially depends on the amount of uncertainty. More in-
formation, or even knowing the exact data, allows for significantly improved solutions
(see, e. g., [17]). In general, it is impossible to fully avoid uncertainty. Nevertheless, it
is sometimes possible to obtain exact data, but this may involve certain exploration
costs in time, money, energy, bandwidth, etc. A classical application is estimated user
demands that can be specified by undertaking a user survey, but this is an investment
in terms of time and/or cost. Other applications include approximate positions of
mobile devices, whose exact position can be determined at a cost, or insufficient in-
formation on existing infrastructure for telecommunication network planning, where
a field measurement can reveal the capacity of an existing connection.

In this paper we are concerned with fundamental combinatorial optimization
problems with uncertain input data that can be explored at a certain cost. We mainly
focus on the minimum spanning tree (MST) problem with uncertain edge weights. In
a given graph, we know initially for each edge only an interval containing the edge
weight. The true value is revealed upon request (we say query) at a given cost. The
task is to determine a minimum-cost adaptive sequence of queries to find a minimum
weight spanning tree. In the basic setting, we only need to guarantee that the ob-
tained spanning tree is minimal and we do not need to compute its actual weight, i. e.,
there might be tree edges whose weight we never query, as they appear in an MST

∗Received by the editors August 9, 2016; accepted for publication (in revised form) February
10, 2017; published electronically July 18, 2017. An extended abstract of this work appeared in
Proceedings of the 23rd European Symposium on Algorithms, Springer, Heidelberg, 2015, pp. 171–
182 [15].

http://www.siam.org/journals/sicomp/46-4/M108837.html
Funding: This research was carried out in the framework of Matheon supported by Einstein

Foundation Berlin and by the German Science Foundation (DFG) under contract ME 3825/1.
†Department of Mathematics and Computer Science, University of Bremen, Germany

(nicole.megow@uni-bremen.de).
‡Department of Mathematics, Technische Universität Berlin, Germany (jmeiss@math.tu-

berlin.de, skutella@math.tu-berlin.de).

1217

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sicomp/46-4/M108837.html
mailto:nicole.megow@uni-bremen.de
mailto:jmeiss@math.tu-berlin.de
mailto:jmeiss@math.tu-berlin.de
mailto:skutella@math.tu-berlin.de

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1218 N. MEGOW, J. MEIßNER, AND M. SKUTELLA

independent of their exact weights. We measure the performance of an algorithm by
competitive analysis. For any realization of edge weights, we compare the query cost
of an algorithm with the optimal query cost. This is the cost for verifying an MST
for a given fixed realization.

As our main result we develop a randomized algorithm that improves upon the
competitive ratio of any deterministic algorithm. This solves an important open
problem in this area [4]. We also present the first algorithms for nonuniform query
costs and generalize the results to matroids with uncertain weights, in both settings
matching the best known competitive ratios for MST with uniform query cost.

Related work. The huge variety of research streams dealing with optimization
under uncertainty reflects its importance for theory and practice. The major fields
are online optimization [3], stochastic optimization [2], and robust optimization [1],
each modeling uncertain information in a different way. Typically these models do
not provide the capability to influence when and how uncertain data are revealed.
Kahan [12] was probably the first to study algorithms for explicitly exploring uncertain
information in the context of finding the maximum and median of a set of values
known to lie in given uncertainty intervals. Erlebach and Hoffmann recently compiled
a survey of the research on this uncertainty model [4].

The MST problem with uncertain edge weights was introduced by Erlebach
et al. [7]. Their deterministic algorithm U-RED achieves competitive ratio 2 for
uniform query cost when all uncertainty intervals are open intervals or trivial (i. e.,
containing one point only). They also show that this ratio is optimal and can be gen-
eralized to the problem of finding a minimum weight basis of a matroid with uncertain
weights [6]. According to [4] it remained a major open problem whether randomized
algorithms can beat competitive ratio 2. The offline problem of finding the optimal
query set for a given realization of edge weights can be solved optimally in polynomial
time [5].

Further problems studied in this uncertainty model include finding the kth small-
est value in a set of uncertainty intervals [9, 11, 12] (also with nonuniform query
cost [9]), caching problems in distributed databases [16], computing a function
value [13], and classical combinatorial optimization problems, such as shortest path [8],
finding the median [9], and the knapsack problem [10].

A generalized exploration model was proposed in [11]. The OP-OP model reveals,
upon an edge query, a refined open or trivial subinterval and might, thus, require
multiple queries per edge. It is shown in [11] that algorithm U-RED can be adapted
and still achieve competitive ratio 2. The restriction to open intervals is not crucial
as slight model adaptions allow one to deal with closed intervals [11, 12].

While most works aim for minimal query sets to guarantee exact optimal solutions,
Olsten and Widom [16] initiate the study of trade-offs between the number of queries
and the precision of the found solution. They are concerned with caching problems.
Further work in this vein can be found in [8, 9, 13].

Our contribution. After presenting lower bounds and structural insights in sec-
tion 3, we affirmatively answer the question whether randomization helps to minimize
query cost in finding an MST. In section 4 we describe an algorithm framework under-
lying both our randomized algorithm as well as the result for nonuniform query costs.
In section 5 we present this randomized algorithm with tight competitive ratio 1.707,
thus beating the best possible competitive ratio 2 of any deterministic algorithm.

One key observation is that the MST problem under uncertainty can be inter-
preted as a generalized online bipartite vertex cover problem. A similar connection for

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MINIMUM SPANNING TREE UNDER UNCERTAINTY 1219

a given realization of edge weights was established in [5] for the related MST verifi-
cation problem. In our case, new structural insights allow for a preprocessing which
suggests a unique bipartition of the edges for all realizations simultaneously. Our al-
gorithm borrows and refines ideas from a recent water-filling algorithm for the online
bipartite vertex cover problem [18].

In section 6 we consider the more general nonuniform query cost model in which
each edge has an individual query cost. We observe that this problem can be re-
formulated within a different uncertainty model, called OP-OP, presented in [11].
The 2-competitive algorithm in [11] is a pseudopolynomial 2-competitive algorithm
for our problem with nonuniform query cost. We design new direct and polynomial-
time algorithms that are 2-competitive and 1.707-competitive in expectation using the
framework from section 4. To that end, we employ a new strategy carefully balancing
the query cost of an edge and the number of cycles it occurs in.

In section 7 we consider the problem of computing the exact value of an MST
under uncertain edge weights. While previous algorithms (U-RED [7], our algorithms)
iteratively try to identify the largest weight edge on a cycle, we now attempt to detect
minimum weight edges separating the graph into two components. This yields an
algorithm based on cuts that is optimal for computing the exact value of an MST
under uncertain edge weights. Interestingly, the same algorithm solves the original
problem (only computing the MST, not its exact value) and achieves the same, best-
possible competitive ratio 2, as the cycle-based algorithm presented in [7].

In section 8 we observe in a broader context that these two algorithms can be
interpreted as the best-in and worst-out greedy algorithm on matroids.

Finally, we show in section 9 that in the adapted model where a query reveals
only a subinterval and thus several queries per edge might be necessary, randomization
does not allow for an improvement over worst-case competitive ratio 2.

Furthermore, we prove in section 10 that finding an approximate MST
under uncertainty also does not improve the worst-case bounds on the competitive
ratio.

2. Problem definition and notation. Initially we are given a weighted, undi-
rected, connected graph G = (V,E) with |V | = n and |E| = m. Each edge e ∈ E
comes with an uncertainty interval Ae and possibly a query cost ce. The uncertainty
interval Ae constitutes the only information about e’s unknown weight we ∈ Ae. We
assume that an interval with lower limit Le and upper limit Ue is either trivial, i.e.,
Ae = [Le, Ue], Le = we = Ue, or it is open, Ae = (Le, Ue), Le < Ue. We refer to
such an instance of our problem as an uncertainty graph. A realization R of edge
weights (we)e∈E for an uncertainty graph is feasible, if all edge weights we, e ∈ E, lie
in their corresponding uncertainty intervals, i.e., we ∈ Ae.

The task is to find an MST in the uncertainty graph G for an a priori unknown,
feasible realization R of edge weights. To that end, we may query any edge e ∈ E
at cost ce and obtain its exact weight we according to R. The goal is to design an
algorithm that constructs a sequence of queries that determines an MST at minimum
total query cost. For a realization R of edge weights, a set of queries Q ⊆ E is feasible,
if an MST can be determined given the exact edge weights for edges in Q only, that
is, given we for e ∈ Q, there is a spanning tree which is minimal for any realization
of edge weights we ∈ Ae for e ∈ E \ Q. We denote this problem as MST with edge
uncertainty and say MST under uncertainty for short.

Note that this problem does not necessarily involve computing the actual MST
weight. We refer to the problem variant in which the actual MST weight must be

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1220 N. MEGOW, J. MEIßNER, AND M. SKUTELLA

computed as computing the MST weight under uncertainty. We also briefly consider
the problem in which the query to an edge e does not necessarily reveal the exact edge
weight, but may reveal a new uncertainty interval, as a subinterval of the previous
one instead. Here the input is a sequence of intervals A1

e ⊇ A2
e ⊇ · · · and the query

set is a multiset of the edges.
We also consider the generalization of the problem to matroids. Given a ground

set of elements X and a family of independent sets I ⊆ 2X , we call a matroid M =
(X, I) with an uncertainty interval Ax for each element x ∈ X instead of the element’s
weight an uncertainty matroid. We define a query and its cost exactly as for the
MST problem and refer to the problem of finding a minimum weight matroid base
in an uncertainty matroid using a minimal number of queries as matroid base under
uncertainty.

We evaluate our algorithms by standard competitive analysis. An algorithm is
c-competitive if, for any realization (we)e∈E , the solution query cost is at most c times
the optimal query cost for this realization. The optimal query cost is the minimum
query cost that an offline algorithm (knowing the realization of edge weights) must
pay to verify an MST. The competitive ratio of an algorithm Alg is the infimum over
all c such that Alg is c-competitive. For randomized algorithms we compare the
expected query cost to the optimal query cost. Competitive analysis addresses the
problem complexity evolving from the uncertainty in the input, possibly neglecting
any computational complexity. However, we note that all our algorithms run in
polynomial time unless explicitly stated otherwise.

In the last section, we briefly consider approximation algorithms for MST under
uncertainty. An algorithm is α-approximate if, for any realization (we)e∈E , the query
set Q found by the algorithm identifies a spanning tree of weight at most α times the
weight of an MST. The approximation ratio of an algorithm ALG is the infimum over
all α, such that ALG is α-approximate.

3. Lower bounds, intuition, and structural insight. The basis for under-
standing the behavior of uncertainty intervals and queries is their interplay on a cycle.
This simple graph structure showcases both, lower bound examples and insights about
the structure of a feasible query set. Consider a triangle with edge weights such that
one edge is in any MST and the other two have overlapping uncertainty intervals
(cf. Figure 1). We cannot decide which of the two edges is in the MST without query-
ing at least one of them. Any deterministic algorithm decides to query either edge f
or edge g first. If it decides to query edge f first, the algorithm has competitive ra-
tio 2 for the realization R1, where the weight of edge f lies in the uncertainty interval
of edge g. As the weight of edge g is not in the uncertainty interval of edge f , the
optimal query set is {g}. Symmetrically the realization R2 reveals competitive ratio 2
for all algorithms that query edge g first. Thus, as was already observed in [7], no
deterministic algorithm can achieve a competitive ratio smaller than 2.

Next we consider randomized algorithms for the instance given in Figure 1. Each
algorithm queries edge f with a certain probability first. We compute the expected
competitive ratio for the two realizations R1,R2 parametrized by this probability.
It is easy to observe that the best randomized algorithm queries both edges with
probability 1/2 and has expected competitive ratio 1.5. This surprisingly easy example
yields the best known lower bound on the competitive ratio for randomized algorithms.
This lower bound was independently observed by Erlebach and Hoffmann [4].

We can already observe important problem features when considering a more
general cycle (cf. Figure 2). To verify an MST on a cycle, we only need to identify

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MINIMUM SPANNING TREE UNDER UNCERTAINTY 1221

h: [1, 1]

g: (0, 3)→ 1f: (1, 4)→ 2

h: [1, 1]

g: (0, 3)→ 2f: (1, 4)→ 3

Fig. 1. Lower bound example with realization R1 (left) and realization R2 (right). The edge
labels “e : (Le, Ue)→ we” give edge e’s uncertainty interval (Le, Ue) as well as its (a priori unknown)
weight we in a particular realization.

f : (2, 6)

e1 : (1, 4)

e2 : (1, 4)

e3 : [2, 2]

e4 : (0, 3)

e5 : (0, 2)

Fig. 2. Cycle with edge f and edges e1, e2, e4 as additional candidates for being maximal.

an edge of maximal weight. Then there is an MST that does not contain this edge,
and we can delete it [14]. We call such an edge maximal. An edge f with the largest
upper limit Uf is a natural candidate for being maximal. We first observe that for
each such edge f , unless we query it, we cannot prove it is contained in an MST, as
it has the largest upper limit.

Observation 3.1. Given a cycle C, where no edge is known to be maximal, let f
be some edge with largest upper limit Uf . Let R be a feasible realization of edge
weights, for which f is in an MST, then f is contained in any feasible query set for R.

We furthermore observe two different possibilities for proving that an edge f with
largest upper limit Uf is in no MST. If edge f has the unique largest lower limit, the
only other edges that are candidates for being maximal are the ones whose uncertainty
interval overlaps with that of edge f . In Figure 2 these are the edges e1, e2, e4. To find
a maximal edge in the cycle we can query edge f to prove its edge weight is larger
than the upper limit of all other edges. We can also query instead all edges with
overlapping uncertainty interval and show their edge weight does not exceed f ’s lower
limit. If edge f does not have the unique largest lower limit, the latter option is not

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1222 N. MEGOW, J. MEIßNER, AND M. SKUTELLA

feasible. Thus f must be in any feasible query set. This observation is strengthened
and generalized in the next section in Lemma 4.2.

Observation 3.2. Let f be some edge with largest upper limit Uf on a cycle C
which does not have a maximal edge.

(i) For any realization R, every feasible query set contains edge f or all edges in C
whose uncertainty interval overlaps that of edge f .

(ii) Unless edge f has the unique largest lower limit Lf in C, it is in every feasible
query set for any realization R.

Structural insight. The algorithm we design starts out with a MST for the
particular realization where the weight of each edge is set to its lower limit. All other
edges are considered in order of increasing lower limit and the algorithm iteratively
tries to add an edge to the current spanning tree, thus closing a cycle. By construction,
this cycle is closed by its edge with largest lower limit. The following structural insight
shows that we can preprocess any instance such that this edge also has the largest
upper limit in the cycle. In particular, we can apply Observation 3.2 to this edge.

Given an uncertainty graph G = (V,E), consider the following two MSTs for
extreme realizations. The lower limit tree TL ⊆ E is an MST for the realization wL,
in which all edge weights of edges with nontrivial uncertainty intervals are close
to their lower limits, more precisely, wLe = Le + ε for infinitesimally small ε > 0.
Symmetrically, the upper limit tree TU ⊆ E is an MST when the same edges have
weight wUe = Ue − ε.

Theorem 3.3. Given an uncertainty graph with trees TL and TU , any edge e ∈
TL \ TU with Le 6= Ue is in every feasible query set for any feasible realization.

Proof. Given an uncertainty graph, let h be an edge in TL\TU with nontrivial
uncertainty interval. Assume all edges apart from h have been queried and thus have
fixed weight we. As edge h is in TL, we can choose its edge weight such that edge h is
in any MST. We set wh = Lh+ε and choose ε so small, that all edges with at least the
same weight in wL now have a strictly larger edge weight. Symmetrically, if we choose
the edge weight wh sufficiently close to the upper limit Uh, no MST contains edge h.
Consequently we cannot decide whether edge h is in an MST without querying it.

Any edge in the set TL\TU with nontrivial uncertainty interval is in every feasible
query set and thus can be queried in a preprocessing procedure before the start of
the algorithm. This can be done by repeatedly computing TL and TU as MSTs of the
realizations wL and wU and querying all edges in TL\TU . After at most m repetitions
this difference contains only edges with trivial uncertainty interval. The existence of
edges e with Le < Ue in TL \ TU increases the size of every feasible query set, in
particular, also the optimal query set, and, hence, decreases the competitive ratio of
an instance. If we furthermore choose the same ordering for identical trivial edges for
TL and TU , then there are no nontrivial edges in TL \ TU . Thus, when analyzing the
worst-case competitive ratio of an algorithm, we can restrict ourselves to instances
for which TL = TU .

Assumption 3.4. We restrict ourselves to uncertainty graphs for which TL = TU .

4. A new algorithm framework. We design an algorithmic framework for
MST under uncertainty, which allows us to plug in several different algorithmic cores.
It is the basis for both our randomized algorithm and our algorithm for nonuni-
form query costs. The algorithm Framework is an adaption of the deterministic

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MINIMUM SPANNING TREE UNDER UNCERTAINTY 1223

Algorithm 1. Framework.

Input: An uncertainty graph G = (V,E).
Output: A feasible query set Q.

1: Determine a tree TL and set the temporary graph Γ to TL.
2: Index the edges in R := E\TL by increasing lower limit f1, . . . , fm−n+1.
3: Initialize Q = ∅.
4: for i = 1 to m− n+ 1 do
5: Add edge fi to the temporary graph Γ and let Ci be the unique cycle closed.
6: Let the neighbor set X(fi) be the set of edges g ∈ TL ∩ Ci with Ug > Lfi .
7: if X(fi) is not empty then
8: use algorithm Core to decide between querying fi and X(fi).
9: while no edge in the cycle Ci is known to be maximal do

10: Query the unqueried edge e ∈ Ci \ Q with maximum Ue and add it to the
query set Q.

11: Delete a maximal edge from Γ.
12: return The query set Q.

algorithm for the problem presented in [7] in the sense that it also relies on the cycle
characterization of MSTs: Every edge not in a particular MST is maximal in the cycle
it closes when added to the MST.

Given an uncertainty graph G = (V,E) our algorithm Framework starts with
a lower limit tree TL. We can view this as a first candidate for an MST we want to
verify. We consecutively try to add the other edges f1, . . . , fm−n+1 ∈ R := E \ TL to
it in order of increasing lower limit; in case of ties we prefer the edge with the smaller
upper limit. In every iteration, i = 0, . . . ,m−n+ 1, we maintain an MST verified for
the already considered edge set Ei := TL ∪ {f1, . . . , fi}; that is, we maintain a nested
chain of subsets ∅ = Q0 ⊆ Q1 ⊆ · · · ⊆ Qm−n+1 such that Qi ⊆ Ei is a feasible query
set for Ei. When we try to add edge fi to the current spanning tree in iteration i, we
consider the cycle Ci it closes and query edges until we find a maximal edge on Ci.
Once we find such an edge, we delete it, as there is an MST not containing this edge.
Then we start a new iteration and take the next edge of the sequence into account.
A formal description of this procedure is given further in Algorithm 1.

This algorithmic structure allows us to prove two lemmas about any feasible query
set and thus, in particular, the optimal feasible query set. The first lemma shows that
any feasible query set for the entire uncertainty graph G = (V,E) also verifies an
MST for the subgraph Gi = (V,Ei). This crucially relies on the fact that we add
edges ordered by increasing lower limit.

Lemma 4.1. Let i ∈ {0, . . . ,m − n + 1}. Given a feasible query set Q for the
uncertainty graph G = (V,E), then the set Q|Ei := Q ∩ Ei is a feasible query set
for Gi = (V,Ei).

Proof. For some fixed realization of edge weights, let T be an MST of G certified
by the feasible query set Q. We construct an MST T ′ of Gi by solely using information
provided by the query set Q|Ei .

We first argue that there is an MST of Gi that contains every edge in T ∩ Ei:
Consider an edge e ∈ T ∩ Ei and let U ⊂ V be the subset of nodes in one of the
two connected components obtained by deleting e from T . Since Q is a feasible query
set, it certifies that e has minimal weight among all edges in E connecting U to its

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1224 N. MEGOW, J. MEIßNER, AND M. SKUTELLA

complement V \ U . As a consequence, query set Q|Ei
certifies that e’s weight is

minimal among all edges in Ei connecting U and V \ U .
We proceed to deal with edges in Ei \ T by distinguishing two cases. The first

case is that adding edge e ∈ Ei \ T to T ∩ Ei closes a cycle C. Then, adding edge e
to tree T closes the same cycle C. Thus, as Q is a feasible query set, it certifies that
edge e is maximal on C. Moreover, since C ⊆ Ei, query set Q|Ei

obviously suffices as
a certificate. We can therefore discard every such edge e.

The second case is that adding edge e ∈ Ei \ T to the spanning tree T closes
a cycle C containing some edge f 6∈ Ei. The feasible query set Q certifies that e’s
weight is lower bounded by the weight of any edge on C including edge f . Notice
that Le ≤ Lf due to our ordering of edges by increasing lower limit (and Ue ≤ Uf in
the case that Le = Lf). Thus, in order to certify that e’s weight is lower bounded by
f ’s weight, its exact weight we must be known.

Summarizing, the query set Q|Ei
certifies that edges in T ∩ Ei can be included

into T ′, certain edges can be safely discarded, and the exact weights of all remaining
edges in Ei are known. The gathered information clearly suffices to find an MST T ′

and, as a consequence, Q|Ei
is indeed a feasible query set for Gi.

In the next lemma we give a precise characterization of the edges which a feasi-
ble query set contains. This characterization is similar to the so-called “witness set
lemma”, that is used in [7] for the deterministic algorithm.

Lemma 4.2. For some realization of edge weights, let T be a verified MST of the
graph Gi = (V,Ei) and let C be the cycle closed by adding edge fi+1 to T . Further-
more, let h be some edge with the largest upper limit in C and g ∈ C\h be an edge
with Ug > Lh. Then any feasible query set for Gi+1 = (V,Ei ∪ {fi+1}) contains h
or g. Moreover, if Ag is contained in Ah, any feasible query set contains edge h.

Proof. Consider an MST T ′ for Gi+1. We distinguish two cases depending on
edge h being in the tree T ′ or not. If h ∈ T ′, any feasible query set must identify
an edge of larger weight on the cycle C. Edge h has the maximal upper limit Uh
among all edges in C and thus it must be queried for that purpose. Hence, in this
case, edge h is in any feasible query set.

If edge h is not in the tree T ′, then h must have maximal weight in C. In
particular, a query set must verify that h’s weight is lower bounded by g’s weight.
The uncertainty intervals of these two edges overlap, and thus any feasible query
set contains at least one of the two edges. Moreover, if g’s uncertainty interval is
contained in that of edge h, querying g does not reveal any information about the
ordering of the two edge weights. Hence, h must be contained in any feasible query
set in this case.

The key to our framework is the structural insight resulting in Assumption 3.4, which
we then use to apply Lemma 4.2 in the analysis of our algorithm. We show that
any edge f in the algorithm, which is added to the current spanning tree to close a
cycle, has the largest upper limit in this cycle. By Assumption 3.4, TL = TU and thus
no edge fi is in TU . This means, if the candidate MST does not change during the
algorithm and stays TL, each edge fi has the largest upper limit in the cycle it closes
with the tree. If the tree changes, an edge fi replaces some edge e ∈ TL that is on
the cycle C which fi closes with the tree. Then, fi’s weight, and the weight or upper
limit of all other edges C must be smaller than the upper limit of the deleted edge e.
Thus, all following cycles closed by edges fj , j > i, which contained the deleted edge e

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MINIMUM SPANNING TREE UNDER UNCERTAINTY 1225

now contain other edges from C and the upper limits on the cycles never increase.
Consequently, these edges fj also have the largest upper limit in the cycle they close
with the tree and we can apply Lemma 4.2 to them.

This means that any feasible query set contains either edge fi or all edges with
uncertainty interval overlapping that of edge fi. Moreover, by Observation 3.1, if
edge fi is in the tree Ti (the MST we verified for Gi), then edge fi must have been
queried. Consequently, all edges that are not in the lower limit tree and, in a later
iteration, occur as edge g in Lemma 4.2 have already been queried. We can thus
restrict the algorithm to consider those edges as g-edges that are in TL. We call them
neighbors of fi and let the neighbor set X(fi) contain all edges e ∈ Ci ∩ TL that have
an overlapping uncertainty interval Ue > Lfi .

Corollary 4.3. Given an uncertainty graph G and a realization of edge weights,
let TL be its lower limit tree. Let T be a verified MST of the graph Gi = (V,Ei) and
let C be the cycle closed by adding edge fi+1 to T . Furthermore, let X(fi+1) ⊆ C∩TL
be the neighbor set. Then any feasible query set contains fi+1 or X(fi+1).

Furthermore, Assumption 3.4 yields that after querying edge fi or the neighbor
set, the conditions for the second part of Lemma 4.2 are always fulfilled.

Lemma 4.4. Given a cycle C on which we have queried edge f with the largest
lower limit or all its neighbors X(f) and still no edge is known to be maximal. Then
any edge e ∈ C with largest upper limit on the cycle (which may now be different from
edge f) is in any feasible query set.

Proof. We distinguish two cases and show for both that we can apply Lemma 4.2:
If edge f was queried but is still not known to be maximal, its edge weight lies in
the uncertainty interval of e, as edge f has the largest lower limit. If all neighbors
of f were queried, we have e = f . This is because by Assumption 3.4 edge f has the
largest upper limit on C. Furthermore, the edge weight of one of f ’s neighbors lies
in Af , as f is not known to be maximal. For both cases edge e is in any feasible query
set by Lemma 4.2.

Hence we can extend the framework by the following two steps on a cycle Ci
without an edge that is known to be maximal. First we call an algorithm Core
which somehow decides between querying edge fi and its neighbor set X(fi). If this
query does not identify a maximal edge, we continue querying edges in the cycle in
order of decreasing upper limit. A formal description of our algorithm is given in
Algorithm 1.

As pointed out above, the algorithm maintains a verified MST for a subset of
the edges of increasing size. At the end of the algorithm the tree is verified for the
complete edge set E and thus Q is a feasible query set. Framework terminates, as
in each iteration of the while loop an edge is queried. As soon as all edges on a cycle
have been queried, we have certainly identified a maximal edge.

Any edge that is queried within Framework outside algorithm Core is in any
feasible query set by Lemma 4.4. Thus the competitive ratio of an algorithm is solely
determined by the query strategy of algorithm Core.

Relation to vertex cover. It was already observed by Erlebach, Hoffmann,
and Kammer [6] that MST under uncertainty has a close relation to the vertex cover
problem. They show that for a fixed realization we can design a bipartite vertex
cover graph using the relation of Lemma 4.2. Then any feasible query set contains
a vertex cover of this graph. We generalize the use of this relation to a complete

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1226 N. MEGOW, J. MEIßNER, AND M. SKUTELLA

problem instance. We create a bipartite vertex cover graph online along the execu-
tion of Framework and thus prove a connection to the online bipartite vertex cover
problem.

In the online bipartite vertex cover problem one side of the bipartite graph is
given (consisting of the so-called offline vertices) and the vertices of the other side
appear online one by one together with their incident edges. In any iteration we have
to maintain a feasible vertex cover of the revealed graph.

For an instance of MST under uncertainty we generate the graph as follows: All
edges of the lower limit tree TL form the offline vertices of the vertex cover graph.
During an execution of the algorithm Framework we add the edge fi ∈ R to the
temporary graph Γ such that it closes a unique cycle Ci. Upon adding edge fi in
the algorithm, we add a corresponding vertex to the vertex cover graph and connect
this new vertex to all vertices corresponding to edges in Ci ∩ TL with overlapping
uncertainty interval. Thus the set of neighbors of the new vertex corresponds to the
neighbor set X(fi).

Observe that the vertex cover graph we create depends on the realization of the
edge weights. We determine the maximal edge for every cycle Ci and delete it. This
determines which cycle is closed next and thus the next incidences in the vertex cover
graph. Thus we need to create the vertex cover graph online and cannot do it a
priori.

5. Randomized algorithm. In this section we describe a randomized algorithm
for MST under uncertainty that achieves competitive ratio 1 + 1/

√
2 ≈ 1.707. Our

algorithm Random employs the algorithm Framework presented in the previous
section and makes use of its vertex cover interpretation for the algorithm core. We
decide how to resolve cycles, by maintaining an edge potential for each edge e ∈ TL
describing the probability to query it. The edge potentials are increased in every
cycle we consider throughout the algorithm. To determine the increase, we carefully
adapt a water-filling scheme presented in [18] for online bipartite vertex cover. This
scheme considers all edges queried in the algorithm Core, but not those queried
in Framework. This is the reason that our algorithm does not achieve the same
competitivity ratio as for online bipartite vertex cover. In this section we assume
uniform query cost ce = 1, e ∈ E, and explain the generalization to nonuniform query
costs in section 6.

Our algorithm Core of Random is the decision procedure of which edges to
query on a cycle Ci in Framework. We maintain an edge potential ye ∈ [0, 1] for
all edges e ∈ TL which is initially set to 0. We query an edge if its potential exceeds
the query bound b, which we draw uniformly at random from [0, 1] before we start
the algorithm Framework. Thus we can interpret the potential as the probability
that edge e is queried.

We identify the following goals for the algorithm design: First, edges in the
neighbor set of fi should be queried with high probability, as they can occur in
further neighbor sets later. Second, if an edge e in the neighbor set is queried with
probability ye, edge fi must be queried at least with probability 1 − ye to ensure
feasibility. And third, in expectation, we cannot query more than 1 + α edges per
iteration to achieve competitive ratio 1 + α. Here α is a fixed parameter that is
determined later in the analysis. Formally we achieve these goals by distributing
no more than potential α among the neighbor set X(fi). We distribute the potential
among all neighbors such that they reach an equal level t(fi) ∈ [0, 1] which is as large as
possible. This means when we increase ye to max{t(fi), ye} for all neighbors e ∈ X(fi),

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MINIMUM SPANNING TREE UNDER UNCERTAINTY 1227

Algorithm 2. Core of Random.

Input: A cycle Ci of the algorithm Framework with its edge fi, neighbor set X(fi),
as well as the edge potentials ye = yie and the query bound b.

Output: A feasible query set Q ⊆ Ci.
1: Maximize the threshold t(fi) ≤ 1 s.t.

∑
e∈X(fi)

max {0, t(fi)− ye} ≤ α.

2: Increase edge potentials ye := max {t(fi), ye} for all edges e ∈ X(fi).
3: if t(fi) < b then
4: Add edge fi to the query set Q and query it.
5: else
6: Add all edges in X(fi) to the query set Q and query them.
7: return The query set Q.

the total potential increase sums up to at most α. Now we compare this threshold t(fi)
to the query bound b to decide which edges to query. If b is the larger of the two, we
query edge fi; otherwise we query all neighbors, the edges in X(fi).

The join of the two algorithms Framework and Core of Random together
with the preceding random choice of b and initially setting ye := 0, e ∈ TL, forms the
algorithm Random. This algorithm has competitive ratio 1 + 1/

√
2 ≈ 1.707 for MST

under uncertainty, if we choose the parameter α to be 1/
√

2.
For the proof of this performance we use an amortized analysis over all cycles

closed during the run of the algorithm. We consider a fixed realization of edge weights
and a corresponding optimal query set Q∗. We denote the potential of an edge e ∈ TL
at the start of iteration i by yie and use ye to denote the edge potential after the
last iteration of the algorithm. We will relate the expected number of queries of
Random to the total edge potential we distribute. For this, we first bound the
potential distributed to edges in TL \Q∗ by the number of edges in R∩Q∗ times our
parameter α (where R = E \ TL).

Lemma 5.1. Given an instance of MST under uncertainty together with a real-
ization of edge weights, the edge potentials after an execution of Random, and any
feasible query set Q∗, it holds that∑

e∈TL\Q∗

ye ≤ α · |R ∩Q∗|.

Proof. For any edge e ∈ TL\Q∗, Corollary 4.3 states that all neighboring edges f ∈
R with e ∈ X(f) must be in the optimal query set Q∗. The potential ye is the sum
of the potential increases caused by edges f ∈ R with e ∈ X(f). As in each iteration
of the algorithm the total increase of potential is bounded by α, we have∑

e∈TL\Q∗

ye =
∑

e∈TL\Q∗

∑
i:fi∈Q∗,
e∈X(fi)

max
{
t(fi)− yie, 0

}
≤

∑
i:fi∈R∩Q∗

∑
e∈X(fi)

max
{
t(fi)− yie, 0

}
≤

∑
i:fi∈R∩Q∗

α = α · |R ∩Q∗|.

This concludes the proof.

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1228 N. MEGOW, J. MEIßNER, AND M. SKUTELLA

Similarly, we can bound the sum over 1− t(fi) of all edges fi ∈ R \Q∗. We will see in
the proof of the competitive ratio that 1−t(fi) is the probability for an edge fi ∈ R\Q∗
to be queried in Random.

Lemma 5.2. Given an instance of MST under uncertainty together with a real-
ization of edge weights, thresholds t(fi) determined in Core of Random, and any
feasible query set Q∗, it holds that∑

i:fi∈R\Q∗

(
1− t(fi)

)
≤ 1

2α
· |TL ∩Q∗|.

Proof. For an edge fi ∈ R\Q∗ with t(fi) < 1 we distribute exactly potential α
among its neighbors X(fi) in lines 1 and 2 of the algorithm Core of Random. By
Corollary 4.3, X(fi) is part of the optimal query set Q∗. We consider the share of
the total potential increase each neighbor receives and distribute the term 1 − t(fi)
according to these shares. Hence,∑

i:fi∈R\Q∗

(1− t(fi)) =
∑

i:fi∈R\Q∗

1− t(fi)
α

∑
e∈X(fi)

max{t(fi)− yie, 0}

=
∑

e∈TL∩Q∗

∑
i:fi∈R\Q∗,
e∈X(fi)

1− t(fi)
α

(yi+1
e − yie) .(1)

In the last equation we have used yi+1
e = max{t(fi), yie}. We consider the inner sum

in (1) and bound the summand from above by an integral from yie to yi+1
e of the

function 1−z
α . This yields a valid upper bound, as the function is decreasing in z and

t(fi) = yi+1
e , unless yi+1

e − yie = 0. Hence,

∑
i:fi∈R\Q∗,
e∈X(fi)

1− t(fi)
α

(yi+1
e − yie) ≤

∑
i:fi∈R\Q∗,
e∈X(fi)

∫ yi+1
e

yie

1− z
α

dz ≤
∫ 1

0

1− z
α

dz =
1

2α
.

Now we use this bound in (1) and conclude∑
i:fi∈R\Q∗

(1− t(fi)) ≤
1

2α
· |TL ∩Q∗|.

This concludes the proof.

Using these two bounds we can calculate the competitive ratio of the algorithm
Random.

Theorem 5.3. For α = 1√
2

, Random has competitive ratio 1 + 1√
2
(≈ 1.707).

Proof. Consider a fixed realization and an optimal query set Q∗, as before. We
first note that by Lemma 4.4 all edges queried in the algorithm Framework are
in Q∗. Now we observe that the increase of potentials in the algorithm depends on
the cycles that are closed and thus on the realization, but not on the queried edges. In
particular, the edge potentials are chosen independently of the query bound b in the
algorithm. Therefore an edge e ∈ TL\Q∗ is queried with probability P (ye ≥ b) = ye
and an edge fi ∈ R\Q∗ is queried with probability P

(
t(fi) < b

)
= 1 − t(fi). Hence,

we can bound the total expected query cost by

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MINIMUM SPANNING TREE UNDER UNCERTAINTY 1229

E [|Q|] ≤ |Q∗|+
∑

e∈TL\Q∗

ye +
∑

i:fi∈R\Q∗

(1− t(fi)) .

Applying Lemmas 5.1 and 5.2 to this equation yields total expected query cost

E [|Q|] ≤ |Q∗|+ α · |R ∩Q∗|+ 1

2α
· |TL ∩Q∗| .

Choosing α = 1/
√

2 yields the desired competitive ratio 1 + 1/
√

2 for Random.
We consider the introductory example described in Figure 1 for realization R2, to

show that this analysis is tight. Random distributes potential α to edge g and thus
queries g first with probability α and f first with probability 1−α. As the realization
has the structure Lf < wg < Ug ≤ wf we need two queries if we query edge g first
and one query otherwise. Thus the expected number of queries is 2α + 1− α, which
is 1 +α. The optimal query set has size 1, hence, Random has expected competitive
ratio 1 + α for this instance.

6. Nonuniform query cost. We now turn to the problem MST under uncer-
tainty in which each edge e ∈ E has associated an individual query cost ce. Without
loss of generality, we assume ce > 0 for all e ∈ E, since querying all other edges
does not increase the total query cost. We adapt our algorithm Random (sect. 5)
to handle nonuniform query costs achieving the same competitive ratio 1 + 1/

√
2 and

then show how to derive a deterministic 2-competitive algorithm from it.
Before showing the main results, we remark that the problem can also be trans-

formed into the OP-OP model [11]. This model allows multiple queries per edge and
each query returns an open or trivial subinterval (point). Given an uncertainty graph,
we model the nonuniform query cost ce ∈ Z>0, e ∈ E, in the OP-OP model as follows:
Querying an edge e returns the same interval for ce − 1 queries and returns the exact
edge weight upon the ceth query. Then the 2-competitive algorithm for the OP-OP
model [11] has a running time depending on the query cost of our original problem.

Theorem 6.1. There is a pseudopolynomial, deterministic, 2-competitive algo-
rithm for MST under uncertainty with nonuniform query cost.

6.1. Randomization for nonuniform query costs. We generalize the algo-
rithm Core of Random (sect. 5) to the nonuniform query costs model. The adap-
tation is similar to one for the weighted online bipartite vertex cover problem in [18].
For each edge fi ∈ E\TL with query cost cfi we now distribute at most α · cfi new po-
tential to its neighborhood X(fi). We obtain Algorithm 3, Core of Non-uniform
Random, by replacing line 1 of Core of Random (Algorithm 2) by

(2) maximize t(fi) ≤ 1 s.t.
∑

e∈X(fi)

ce ·max{t(fi)− ye, 0} ≤ α · cfi holds.

We can apply exactly the same analysis as presented in section 5 to prove the
competitive ratio of this algorithm. There are nonuniform cost variants of the two
lemmas bounding the potential of the edges in TL and the query probability of edges
in R.

Lemma 6.2. Given an instance of MST under uncertainty together with a real-
ization of edge weights, the edge potentials after an execution of Random adapted
by (2), and any feasible query set Q∗, it holds that∑

e∈TL\Q∗

ce · ye ≤ α
∑

i:fi∈R∩Q∗

cfi .

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1230 N. MEGOW, J. MEIßNER, AND M. SKUTELLA

Algorithm 3. Core of Nonuniform Random.

Input: A cycle Ci of the algorithm Framework with its edge fi, neighbor set X(fi),
as well as the edge potentials ye and the query bound b.

Output: A feasible query set Q ⊆ Ci and a maximal edge.
1: Maximize the threshold t(fi) ≤ 1 s.t.

∑
e∈X(fi)

ce ·max {0, t(fi)− ye} ≤ α · cfi .
2: Increase edge potentials ye := max {t(fi), ye} for all e ∈ X(fi).
3: if t(fi) < b then
4: Add edge fi to the query set Q and query it.
5: else
6: Add all edges in X(fi) to the query set Q and query them.
7: return The query set Q.

Lemma 6.3. Given an instance of MST under uncertainty together with a realiza-
tion of edge weights, the thresholds t(fi) determined according to (2), and any feasible
query set Q∗, it holds that∑

i:fi∈R\Q∗

cfi ·
(
1− t(fi)

)
≤ 1

2α

∑
e∈TL∩Q∗

ce.

Using the same line of arguments as in the proof of Theorem 5.3, we can derive the
following theorem.

Theorem 6.4. For the nonuniform query cost setting our algorithm Random
adapted according to (2) achieves competitive ratio 1 + 1√

2
.

6.2. Balancing algorithm. Our polynomial-time algorithm Balance applies
the algorithm Framework together with an adaption of the previously described
algorithm Core of Nonuniform Random to the deterministic setting. We call
this new core algorithm Core of Balance. Erlebach et al. [7] proved that no
deterministic algorithm can achieve competitive ratio less than 2, even in the uniform
cost case. Thus we set the parameter α to 1. The goals for the algorithm design are
the same as before. We prefer to query the neighbor set of fi, as these edges may
appear in several neighbor sets. However, we cannot query the neighbor set, if the
additional cost exceeds cfi to ensure the competitive ratio.

As before we achieve these goals by maintaining an edge potential ye for each
edge e ∈ TL. We reinterpret it as representing the share of the query cost of edge e
for which we have already accounted. As the optimal solution needs to contain either
edge fi or all edges in X(fi), its cost increases exactly by the smaller of the two costs.
We query edge fi, if its query cost is smaller than the not yet covered cost of the
neighbors. This is equivalent to a threshold t(fi) < 1. In this case edge fi covers an
additional cost share of size cfi in the neighbor set and we increase the edge potentials
accordingly. Otherwise all neighbors e ∈ X(fi) are queried.

Similarly to the proof of the competitive ratio of algorithm Random we can
divide the algorithm’s query set into different parts and bound them separately to
prove that algorithm Balance is 2-competitive.

Theorem 6.5. Algorithm Balance has competitive ratio 2, which is best
possible.

Proof. For some realization, let Q∗ denote an optimal query set. Consider the
query set Q computed by Balance and let R := E \TL. Then we can split the query

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MINIMUM SPANNING TREE UNDER UNCERTAINTY 1231

Algorithm 4. Core of Balance.

Input: A cycle Ci of the algorithm Framework with its edge fi, neighbor set X(fi)
as well as the edge potentials ye.

Output: A feasible query set Q ⊆ Ci.
1: Maximize the threshold t(fi) ≤ 1 s.t.

∑
e∈X(fi)

ce ·max {0, t(fi)− ye} ≤ cfi .
2: Increase edge potentials ye := max {t(fi), ye} for all e ∈ X(fi).
3: if t(fi) < 1 then
4: Add edge fi to the query set Q and query it.
5: else
6: Add all edges in X(fi) to the query set Q and query them.
7: return The query set Q.

set Q into three parts: Q∩Q∗, (TL∩Q)\Q∗, and (R∩Q)\Q∗. For all edges e ∈ TL∩Q
we have ye = 1, hence,∑

e∈Q
ce =

∑
e∈Q∩Q∗

ce +
∑

e∈(TL∩Q)\Q∗

ce +
∑

i:fi∈(R∩Q)\Q∗

cfi

≤
∑
e∈Q∗

ce +
∑

e∈TL\Q∗

ce · ye +
∑

i:fi∈R\Q∗

cfi .

The first term can be trivially bounded by the cost of Q∗. For the edges in R \ Q∗,
we charge their full query cost in terms of potential to the edges in the neighbor set.
We denote the edge potential at the start of iteration i by yie and denote the edge
potential after the last iteration of the algorithm by ye. By Corollary 4.3 we know
that X(fi) ⊆ Q∗ for fi /∈ Q∗. Thus we can reformulate∑

i:fi∈R\Q∗

cfi =
∑

i:fi∈R\Q∗

∑
e∈X(fi)

ce
(
yi+1
e − yie

)
≤

∑
e∈TL∩Q∗

ce · ye ≤
∑

e∈TL∩Q∗

ce .

For all edges in TL \Q∗, we apply Lemma 6.2 with α = 1. Thus we get, in total,∑
e∈Q

ce ≤
∑
e∈Q∗

ce +
∑

e∈TL\Q∗

ce · ye +
∑

i:fi∈R\Q∗

cfi

≤
∑
e∈Q∗

ce +
∑

i:fi∈R∩Q∗

cfi +
∑

e∈TL∩Q∗

ce

= 2
∑
e∈Q∗

ce .

This factor of 2 is best possible for deterministic algorithms, even in the special case
of uniform query costs (cf. section 3, of [7]).

7. Computing the MST weight under uncertainty. In this section we give
an optimal polynomial-time algorithm for computing the exact MST weight in an
uncertainty graph. As a key to our result, we algorithmically utilize the well-known
characterization of MSTs through the cut property—in contrast to previous algo-
rithms for MST under uncertainty which relied on the cycle property (cf. Random,
Balance, and U-RED [7]).

In our algorithm Cut-Weight, we consider a spanning tree Γ and iteratively
delete its edges. In each iteration, we consider the cut which is defined by the two

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1232 N. MEGOW, J. MEIßNER, AND M. SKUTELLA

Algorithm 5. Cut-Weight.

Input: Uncertainty graph G = (V,E).
Output: A feasible query set Q.

1: Find a spanning tree Γ and let Q := ∅.
2: Index the edges of Γ by e1, e2, . . . , en−1.
3: for i = 1 to n− 1 do
4: Delete ei from Γ.
5: Let S be the cut containing all edges in G between the two components of Γ.
6: while S does not contain a minimal edge with trivial uncertainty interval do
7: Choose g ∈ S such that Lg = min{Le|e ∈ S}.
8: Query g and add it to Q.
9: Add a minimal edge in S to Γ.

10: return The query set Q.

halves of the tree and query edges in increasing order of lower limits until we have
identified and queried a minimal edge in the cut. That means an edge which is in an
MST for any feasible realization. Then we exchange the tree edge with the minimal
edge.

Theorem 7.1. The algorithm Cut-Weight finds the optimal query set for MST
weight under uncertainty in polynomial time.

Proof. We show for every edge we query, that it is in any feasible query set.
Assume there is an edge g which contradicts this. Then, let T be the MST which
does not contain this edge. We query edge g in the algorithm, when it has the smallest
lower limit in a cut S. At least one edge f ∈ S is in the MST T and T \ f ∪ g is also
a spanning tree. As the cut S does not contain a minimal edge when g is chosen in
Cut-Weight, edge f has current upper limit U ′f > Lg. As we also have Lg ≤ Lf , this
means if the edge weight of g is sufficiently close to its lower limit, we can exchange g
with edge f and reduce the weight of the tree T . Thus edge g must be in the feasible
query set to ensure the spanning tree is minimal.

The query set the algorithm computes is feasible, as it verifies any edge that is
chosen for the MST is minimal in a cut. The algorithm queries all edges of the MST,
as any edge finally in the tree was a minimal edge with trivial uncertainty interval for
some cut in the algorithm. It terminates, because in each iteration of the while loop
one edge is queried. At the latest, when all edges in a cut have been queried, we find
a minimal edge. It runs in polynomial time, as we query one edge in each iteration
and there is a polynomial number of edges.

It may seem surprising that the cut-based algorithm solves the problem optimally,
whereas cycle-based algorithms do not. However, there is an intuitive explanation.
The cycle-based algorithms identify the edge of maximum weight on a cycle, which is
not in the tree. Informally speaking, they have a bias to query edges not in the MST.
In contrast, Cut-Weight considers cuts in the graph and identifies the minimum
weight edge in each cut, which characterizes an MST.

8. Matroid base under uncertainty. We consider a natural generalization of
MST under uncertainty: given an uncertainty matroid, i.e., a matroid with a ground
set of elements with unknown weights, find a minimum weight matroid base. Erlebach,
Hoffmann, and Kammer [6] show that the algorithm U-RED [7] can be applied to
uncertainty matroids with uniform query cost and yields again a competitive ratio

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MINIMUM SPANNING TREE UNDER UNCERTAINTY 1233

of 2. Similarly, our algorithms Random and Balance can be generalized to matroids
with nonuniform cost, and Cut-Weight can determine the total weight of a minimum
weight matroid base.

Theorem 8.1. There are deterministic and randomized online algorithms with
competitive ratio 2 and 1 + 1/

√
2 ≈ 1.707, respectively, for the matroid base under

uncertainty with nonuniform query cost.

Theorem 8.2. There is an algorithm that determines an optimal query set for
the matroid base weight under uncertainty and computes the exact weight of the base.

In a matroid with known weights we can find a minimum weight base using
greedy algorithms; we distinguish between best-in greedy and worst-out greedy algo-
rithms (cf. [14]). They are dual in the sense that both solve the problem on a matroid
and each takes the role of the other on the corresponding dual matroid.

The best-in greedy algorithm adds elements in increasing order of weights as long
as the system stays independent. We present a best-in greedy algorithm, Cycle-
Alg, for uncertainty matroids by merging ideas from the algorithms Random and
U-RED2 in [6]. The worst-out greedy algorithm deletes elements in decreasing order
of weights as long as a basis is contained in what remains. We show how to adapt our
algorithm Cut-Weight in section 7 to a worst-out greedy algorithm, Cut-Alg, for
uncertainty matroids.

Proposition 8.3. The algorithms Cycle-Alg and Cut-Alg are dual to each
other in the sense that they solve the same problem on a matroid and its dual.

8.1. Cycle algorithm. Our algorithm Cycle-Alg is inspired by our algorithm
Framework as well as the algorithm for uncertainty matroids in [6]. To design a
greedy algorithm, we avoid the preprocessing step of the framework and thus do not
rely on Assumption 3.4. We start with a matroid basis and greedily decide for all
other elements, if they improve the basis weight or not. Analogously to the MST case
we define a lower limit matroid base BL as a basis for the realization wL, in which
all weights of elements with a nontrivial uncertainty interval are close to their lower
limit, more precisely, wx = Lx + ε for infinitesimally small ε > 0.

Given an uncertainty matroid M = (X, I), our algorithm Cycle-Alg starts with
a minimal lower limit basis BL. We can view this as a first candidate for a minimum
weight basis we want to verify. We consecutively add the other elements f1, . . . ,
fm−n+1 to it in order of increasing lower limit; in the case of ties we prefer the
element with the smaller upper limit. In every iteration we maintain a minimum
weight basis verified for the already considered element set Xi := BL ∪ {f1, . . . , fi}
with corresponding family of independent sets Ii := {I ∩ Xi|I ∈ I}, i.e., the ma-
troid Mi := (Xi, Ii). For each element we add, we consider the minimal dependent
set C that is now contained. We query elements from C until we identify a maximal
element in this set, by each time choosing an element with maximal upper limit f
from C and an element g ∈ C\f with overlapping uncertainty interval. Note that here
element f is not necessarily the just added element fi in the first iteration of the while
loop, as our uncertainty matroid may not fulfill the equivalent of Assumption 3.4 for
matroids.

The query set the algorithm computes is feasible, as it verifies any element that
is deleted is maximal in a dependent set. It terminates, as in each iteration of the
while loop at least one element is queried. When all elements in a set C have been
queried, we always find a maximal element.

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1234 N. MEGOW, J. MEIßNER, AND M. SKUTELLA

Algorithm 6. Cycle-Alg.

Input: An uncertainty matroid M = (X, I).
Output: A feasible query set Q.

1: Determine lower limit basis BL; set the temporary basis Γ to BL.
2: Index all elements in R := X \BL by increasing lower limit f1, f2, . . . , fm−n+1.
3: Initialize Q := ∅.
4: for i = 1 to m− n+ 1 do
5: Add element fi to the temporary basis Γ and let C be the occurring minimal

dependent set.
6: while C does not contain a maximal element do
7: Choose f ∈ C s.t. Uf = max{Ue|e ∈ C}.
8: Choose g ∈ C\{f} with Ue > Lf .
9: Add elements f and g to the query set Q and query them.

10: Delete the maximal element x from Γ.
11: return The query set Q.

Observation 8.4. Cycle-Alg is a best-in greedy algorithm for matroid base un-
der uncertainty.

The structure of Cycle-Alg is very similar to our algorithm Framework. In
particular, we once again maintain a partial solution, i.e., a minimum weight basis
verified for a subset of the elements, and extend it by an additional element in every
iteration. Hence it is not surprising, that we can reprove Lemmas 4.1 and 4.2 for the
uncertainty matroid setting.

Lemma 8.5. Given a feasible query set Q for an uncertainty matroid M = (X, I),
then the set Q|Xi

:= Q ∩Xi is a feasible query set for Mi = (Xi, Ii).

Lemma 8.6. Let B be a verified minimum weight basis of the uncertainty ma-
troid Mi = (Xi, Ii) and let C be the minimal dependent set contained in B ∪ fi+1.
Furthermore, let h be an element with the largest upper limit in C and g ∈ C\h be
an element with Ug > Lh. Then any query set verifying a minimum weight basis
for Mi+1 = (Xi+1, Ii+1) contains h or g.

In particular, if Ag is contained in Ah, any feasible query set contains element h.

Theorem 8.7. Cycle-Alg is 2-competitive for matroid base under uncertainty.

Proof. The query set Q Cycle-Alg computes is built iteratively. In each step
we consider an element pair f, g and query the previously not queried part of it.
This means we can partition Q into subsets of size at most two and allocate an
algorithm iteration to each of them. By Lemma 8.5, any feasible query set must
verify a minimum weight basis in that iteration. Furthermore, Lemma 8.6 yields that
any feasible query set contains at least one element from the allocated query subset.
Using the fact that any query subset has size at most two, this yields that Q is at
most twice as large as any feasible query set.

8.2. Cut algorithm. Our dual algorithm Cut-Alg is a modification of the
algorithm Cut-Weight we presented in section 7. We choose a particular upper limit
basis BU to start the algorithm. Let BU be a minimal basis for the realization wU

in which all weights of elements with nontrivial uncertainty interval are close to their
upper limit, more precisely, wx = Ux − ε for infinitesimally small ε > 0. We can view
this as a first candidate for a minimum weight basis we want to verify. We choose

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MINIMUM SPANNING TREE UNDER UNCERTAINTY 1235

Algorithm 7. Cut-Alg.

Input: An uncertainty matroid M = (X, I).
Output: A feasible query set Q.

1: Determine an upper limit basis BU and set the temporary basis Γ to BU .
2: Index all elements of BU by decreasing upper limit g1, g2, . . . , gn.
3: Initialize Q := ∅.
4: for i = 1 to n do
5: Delete element gi from Γ.
6: Let S ⊂ X contain all elements x such that Γ ∪ {x} contains a basis.
7: while S does not contain a minimal element do
8: Choose g ∈ S s.t. Lg = min{Le|e ∈ S}.
9: Choose f ∈ S\{g} with Lf < Ug.

10: Add elements f and g to the query set Q and query them.
11: Add a minimal element of S to Γ.
12: return The query set Q.

to delete the basis elements g1, . . . , gn from it in order of decreasing upper limit; in
the case of ties we prefer the element with the larger lower limit. For each element
we delete, we consider the set S ⊆ X of all elements that would complete a basis.
We query elements from S until we identify a minimal element in this set. We decide
which elements to query by choosing an element with smallest lower limit g from S
and an element f ∈ S\g with overlapping uncertainty interval. As before an element
is called minimal, if it is in a basis for any realization.

The query set computed by the algorithm is feasible as it verifies any element
in Γ is minimal in a set S and at least one element from the set S is contained in
every basis. It terminates as in each iteration of the while loop an element is added
or queried. When all elements in a set S have been queried, we always find a minimal
element.

Observation 8.8. Cut-Alg is a worst-out greedy algorithm for Matroid base un-
der uncertainty.

We claim that Cut-Alg is dual to our algorithm Cycle-Alg in the sense that it
behaves exactly as Cycle-Alg does on the dual matroid. For a given uncertainty
matroid M , the dual matroid M∗ has the same element set and the set of independent
sets contains all sets whose complement contains a basis. Thus a basis of the dual
matroid is exactly the complement of a basis of the original matroid.

We will consider the dual matroid with the inverted weight function. With this
notion we mean that for any element x ∈ X with weight wx and uncertainty inter-
val (Lx, Ux) we consider the uncertainty interval (−Ux,−Lx) and weight −wx for the
dual matroid.

We first prove that Cut-Alg computes a query set verifying a minimum weight
basis of the dual matroid for the inverted weight function.

Theorem 8.9. Cut-Alg computes a 2-competitive query set Q verifying a mini-
mum weight matroid base for the dual matroid M∗ = (X, I∗) with inverted weight
function.

Proof. Cut-Alg starts out with an upper limit basis X \BU of the matroid M .
According to the inverted weight function, this is a lower limit basis of M∗. In the
algorithm we sort the elements of BU by decreasing upper limit. This is the same

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1236 N. MEGOW, J. MEIßNER, AND M. SKUTELLA

order as sorting by increasing lower limit for the inverted weight function. The set S
we choose is a minimal dependent set, i.e., a cycle, in the dual matroid M∗. Exactly
as required in Lemma 8.6, we choose the two elements we query such that one has
the largest upper limit, i.e., the smallest lower limit according to the inverted weight
function, and the other has an overlapping uncertainty interval. Thus, for any edge
pair we add to the query set Q, the optimal query set contains at least one of the
two.

Therefore Cut-Alg computes a query set Q that verifies a minimum weight
basis of M∗ and has at most twice the size of any query set verifying such a
basis.

Theorem 8.10. Cut-Alg is 2-competitive for matroid base under uncertainty.

Proof. We need to prove that the query set Q computed by the algorithm Cut-
Alg verifies a minimum weight matroid base and has at most twice the size of any
feasible query set fulfilling this property. First we observe that Cut-Alg verifies a
minimum weight matroid basis of the dual matroid M∗ with inverted weight function.
The complement of a basis of the dual matroid is a basis of the original matroid M .
Hence, the algorithm verifies a basis of the matroid M of maximum weight for the
inverted weight function. This, however, means it verifies a basis of M of minimum
weight according to the original weight function.

The line of arguments above shows that any set verifying a minimum weight
matroid base of M∗ for the inverted weight function also verifies a minimum weight
matroid base of M for the original weight function and vice versa. Hence, the family
of feasible query sets is the same for both problems. As the computed query set Q
is at most twice the size of a feasible query set for a minimum weight matroid base
of M∗, it also has at most twice the size of a feasible query set verifying a minimum
weight matroid base of M with inverted weight function.

9. Queries returning intervals. We consider the extension of our query model,
in which a query to an edge may return an open subinterval of the current uncertainty
interval instead of a point. In this model, several queries to one edge might be nec-
essary. The model was first analyzed in [11] under the name OP-OP model, meaning
the original uncertainty intervals are open intervals or points and the query output
as well. They show for MST under uncertainty that the deterministic 2-competitive
algorithm by Erlebach et al. [7] extends to the OP-OP model without any loss in
the competitive ratio. We analyze the OP-OP model for randomized algorithms and
show the surprising fact, that no improvement over competitive ratio 2 is possible
using randomization.

We consider a randomized problem instance (G,R, p), that is an uncertainty graph
G together with a family of feasible realizations R and a probability distribution p
on these realizations. We use R ∼p R to denote a realization R drawn from R
according to p. For such a randomized instance, we show that for no deterministic
algorithm is the expected ratio of ALG/OPT less than 2. Applying a variant of
Yao’s principle [3, 19], this yields that no randomized algorithm has competitive ratio
smaller than 2.

Theorem 9.1 (variant of Yao’s principle [3, Thm. 8.5]). Let A denote the
class of all deterministic algorithms and let F be the family of all randomized in-
stances (G,R, p) for a minimization problem. Then any randomized algorithm has a

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MINIMUM SPANNING TREE UNDER UNCERTAINTY 1237

f : (1, 3)

g : (0, 2)

Fig. 3. Lower bound example for OP-OP randomized.

competitive ratio c for which holds

c ≥ min
ALG∈A

ER∼pR

[
ALG(G,R)

OPT (G,R)

]
∀(G,R, p) ∈ F .

Consider the uncertainty graph depicted in Figure 3, with two edges f and g
joining the same pair of vertices and uncertainty intervals Af = (1, 3) and Ag = (0, 2).
For a fixed parameter n ∈ Z>0 we first define the family Rn of 2n feasible realizations
and then give a probability distribution for them. Let realization Rj reveal for j − 1
queries to edge f uncertainty interval (1, 3) and for the jth query interval [2, 2]. Here
the uncertainty interval of edge g stays (0, 2) for n queries and turns to the trivial
uncertainty interval [1, 1] upon the (n+ 1)st query. Symmetrically let realization R−j
reveal edge weight [1, 1] upon the jth query to edge g and edge weight [2, 2] with the
(n+ 1)st query to edge f . Then the optimal strategies for realizations Rj and R−j on
G are to query edge f or, respectively, edge g repeatedly for j times and thus make
j queries in total.

We define a randomized instance (G,Rn, p) by giving a distribution p over the
realizations in Rn. Let each of the 2n realizations Rj and R−j , j = 1, . . . , n, occur
with probability P (Rj) = P (R−j) = 1/2n in the distribution p.

Consider the algorithm ALG, that alternates between querying edge f and edge g.
If we denote by f i, gi the ith query to edges f and g, the query sequence of the
algorithm is: f1, g1, f2, g2, . . . , fn, gn. We compute the competitive ratio of ALG and
then show its performance is best possible.

Lemma 9.2. The algorithm ALG defined above has competitive ratio at least 2.

Proof. Consider the randomized instance (G,Rn, p) for n ∈ Z>0 defined above.
We show algorithm ALG has competitive ratio 2 when n tends to infinity. The
algorithm ALG needs 2j − 1 queries when realization Rj occurs, as it queries edge f
for the jth time after querying both edges j−1 times. For realization R−j it needs 2j
queries. The optimal query set has size j for both realizations Rj and R−j . Thus the
competitive ratio for the randomized instance (G,Rn, p) is

ER∼pRn

[
ALG(G,R)

OPT(G,R)

]
=

n∑
j=1

P (Rj)
2j − 1

j
+

n∑
j=1

P (R−j)
2j

j
= 2− 1

2n

n∑
j=1

1

j
.

The sum expresses the harmonic number Hn, which has growth less than 1/n, and
thus we get

ER∼pRn

[
ALG(G,R)

OPT(G,R)

]
= 2− 1

2n
·Hn

n→∞−→ 2.

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1238 N. MEGOW, J. MEIßNER, AND M. SKUTELLA

This proves algorithm ALG has competitive ratio at least 2 on the randomized instance
(G,Rn, p) and thus also in general.

Lemma 9.3. No algorithm performs better than ALG on the randomized problem
instance Rn with probability distribution p.

Proof. We observe first, that any algorithm obeying the principle that one edge
is queried for the ith time only after the other edge has been queried for i− 1 times
has the same competitive ratio as ALG, as the family of realizations Rn and the
probability distribution p are symmetric in f and g.

Now consider an algorithm ALG1 not obeying this principle. Its query sequence
contains edges f and g each n times in an arbitrary order. By definition it has a point
in the query sequence where the number of queries to edge f and to edge g differs
by at least 2. Then the query sequence also contains two consecutive queries whose
query numbers differ by at least 2. Without loss of generality, assume their order is
gy, fx and y ≥ x + 2 for two integers x and y. We define a new algorithm ALG2

and show that it has a strictly smaller competitive ratio. Let ALG2 be the algorithm
where we switch these two queries gy, fx and that thus contains the sequence fx, gy.

The number of queries of ALG1 and ALG2 coincides for all realizations R /∈
{Rx, R−y}. Using the linearity of expected values, this means the difference of the
two competitive ratios simplifies to

ER∼pRn

[
ALG2(G,R)

OPT(G,R)

]
− ER∼pRn

[
ALG1(G,R)

OPT(G,R)

]
= ER∼pRn

[
ALG2(G,R)−ALG1(G,R)

OPT(G,R)

]
=

P (R−y) · 1
OPT(G,R−y)

− P (Rx) · 1
OPT(G,Rx)

.

The number of queries for realization Rx is one larger for algorithm ALG1 than for
ALG2. For realization R−y it is the other way around. Hence, we get

ER∼pRn

[
ALG2(G,R)

OPT(G,R)

]
− ER∼pRn

[
ALG1(G,R)

OPT(G,R)

]
=

1

2n

(
1

y
− 1

x

)
=
x− y
2nxy

< 0.

This yields that the performance of ALG2 is strictly better than the performance
of ALG1. Any algorithm that queries f and g alternately has competitive ratio 2
and any other algorithm is not best possible. Thus algorithm ALG with competitive
ratio 2 is best possible for the randomized instance (G,Rn, p).
We apply Yao’s principle (Theorem 9.1) to Lemma 9.3 to prove our claim.

Theorem 9.4. There is no randomized algorithm for MST under uncertainty in
the OP-OP model with competitive ratio c < 2.

Corollary 9.5. The 2-competitive deterministic algorithm presented by Gupta,
Sabharwal, and Sen [11] has best-possible competitive ratio, even among randomized
algorithms.

10. Approximation. We return to the model, in which a single query to an
edge reveals its exact weight. We consider an approximate variant in which we relax
the requirement that an online algorithm must guarantee an exact MST and allow
it to compute an α-approximate MST instead. More precisely, an algorithm is α-
approximate if its query set Q ⊆ E identifies one spanning tree that has weight at
most α times the weight of an MST for any realization of edge weights we ∈ Ae

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MINIMUM SPANNING TREE UNDER UNCERTAINTY 1239

f : (1− 1
2α , α

2 + α)

g : (0, α+ 1
α)

Fig. 4. Lower bound example for α-approximate MST under uncertainty.

for e ∈ E \ Q. As before, we evaluate an algorithm’s performance by competitive
analysis. Note, we only relax the verification requirement for the algorithm, not
for the optimum we compare with. The optimal query set still needs to verify an
exact MST in the uncertainty graph. We show that despite this significant relaxation
of the verification requirements for the algorithm, no performance improvement is
possible—for any approximation factor α.

Theorem 10.1. For any α > 1, there is no α-approximate algorithm for MST
under uncertainty with competitive ratio c < 2. Furthermore, there is no randomized
α-approximate algorithm for MST under uncertainty with competitive ratio c < 1.5.

Proof. Consider the uncertainty graph displayed in Figure 4 for a fixed approx-
imation ratio α > 1. Any deterministic algorithm queries either edge f or edge g
first. For each of the two choices, we give a realization which does not give enough
information to determine an α-approximate MST without a second query, whereas
an optimal algorithm can compute the exact MST with a single query. This yields a
lower bound of 2 on the competitive ratio.

Realization R1 has weights wf = 1, wg = 1/(2α). Then the optimal query set
is {g} and has size one. However, any algorithm which queries edge f first, cannot
verify an α-approximate MST after one query. The algorithm has not yet queried
edge g but has to choose an α-approximate MST for all possible edge weights of edge
g. However, edge f is not an α-approximate MST for wg = 1/(2α) and edge g is not
an α-approximate MST for wg = α+ 1/(2α). Thus the algorithm also needs to query
edge g to verify an α-approximate MST and consequently uses twice as many queries
as the optimal algorithm.

Symmetrically we consider the realizationR2, where edge {f} is the optimal query
set and the edges have weights wf = α2 + 1/α,wg = α. Here, an algorithm querying
edge g first cannot verify an α-approximate MST, as edge f is not an α-approximate
MST for wf = α2+1/α and edge g is not an α-approximate MST for wf = 1−1/(3α).
Hence, again the algorithm needs two queries to find an α-approximate MST while
an optimal algorithm needs only one query to find the MST.

Any randomized algorithm chooses the algorithm fg with some probability p and
gf otherwise. This means it needs 2p+(1−p) queries in expectation for realization R1

and p+2(1−p) queries in expectation for realization R2. The maximum of these two
terms is minimized for p = 1/2. Then this algorithm needs 1.5 queries in expectation
for each of the two realizations. As before, the optimal query set has size 1 for both
realizations, yielding a lower bound 1.5 on the competitive ratio.

Acknowledgment. We thank the anonymous referees for numerous helpful com-
ments and insights that improved the presentation of the paper.

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1240 N. MEGOW, J. MEIßNER, AND M. SKUTELLA

REFERENCES

[1] A. Ben-Tal, L. El Ghaoui, and A. S. Nemirovski, Robust Optimization, Princeton Ser. App.
Math., Princeton University Press, Princeton, NJ, 2009.

[2] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer Ser. Oper.
Res., Springer, New York, 1997.

[3] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge
University Press, Cambridge, 1998.

[4] T. Erlebach and M. Hoffmann, Query-competitive algorithms for computing with uncer-
tainty, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, 116 (2015).

[5] T. Erlebach and M. Hoffmann, Minimum spanning tree verification under uncertainty,
in Graph-Theoretic Concepts in Computer Science, Springer, Cham, Switzerland, 2014,
pp. 164–175.

[6] T. Erlebach, M. Hoffmann, and F. Kammer, Query-competitive algorithms for cheapest set
problems under uncertainty, Theoret. Comput. Sci., 613 (2016), pp. 51–64.

[7] T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihalák, and R. Raman, Computing mini-
mum spanning trees with uncertainty, in Proceedings of STACS, LIPIcs. Leibniz Int. Proc.
Inform. 1, S. Albers and P. Weil, eds., Schloss Dagstuhl, Dagstuhl, Germany, 2008, pp. 277–
288.

[8] T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy, Computing short-
est paths with uncertainty, J. Algorithms, 62 (2007), pp. 1–18.

[9] T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom, Computing the median
with uncertainty, SIAM J. Comput., 32 (2003), pp. 538–547.

[10] M. Goerigk, M. Gupta, J. Ide, A. Schöbel, and S. Sen, The robust knapsack problem with
queries, Comput. Oper. Res., 55 (2015), pp. 12–22.

[11] M. Gupta, Y. Sabharwal, and S. Sen, The update complexity of selection and related prob-
lems, Theory Comput. Syst., 59 (2016), pp. 112–132.

[12] S. Kahan, A model for data in motion, in Proceedings of STOC, ACM, New York, 1991,
pp. 267–277.

[13] S. Khanna and W. C. Tan, On computing functions with uncertainty, in Proceedings of PODS,
ACM, New York, 2001, pp. 171–182.

[14] B. Korte and J. Vygen, Combinatorial Optimization, Algorithms, Combin. 21, Springer,
Heidelberg, 2012.

[15] N. Megow, J. Meißner, and M. Skutella, Randomization helps computing a minimum
spanning tree under uncertainty, in Proceedings of ESA, Springer, Heidelberg, 2015,
pp. 878–890.

[16] C. Olston and J. Widom, Offering a precision-performance tradeoff for aggregation queries
over replicated data, in Proceedings of VLDB, 2000, Springer, Berlin, pp. 144–155.

[17] P. Patil, A. P. Shrotri, and A. R. Dandekar, Management of uncertainty in supply chain,
Int. J. Emerging Technol. Adv. Eng., 2 (2012), pp. 303–308.

[18] Y. Wang and S. C.-W. Wong, Two-sided online bipartite matching and vertex cover: Beating
the greedy algorithm, in Proceedings of ICALP, Springer, New York, 2015, pp. 1070–1081.

[19] A. C.-C. Yao, Probabilistic computations: Towards a unified measure of complexity, in Pro-
ceedings of the 17th Annual Symposium on Foundations of Computer Science (FOCS),
IEEE, Long Beach, CA, 1977, pp. 222–227.

D
ow

nl
oa

de
d

02
/2

8/
18

 to
 1

34
.1

02
.2

08
.1

42
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

	Introduction
	Problem definition and notation
	Lower bounds, intuition, and structural insight
	A new algorithm framework
	Randomized algorithm
	Nonuniform query cost
	Randomization for nonuniform query costs
	Balancing algorithm

	Computing the MST weight under uncertainty
	Matroid base under uncertainty
	Cycle algorithm
	Cut algorithm

	Queries returning intervals
	Approximation
	References

