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Introduction

DVFS (Dynamic Voltage and Frequency Scaling)
I Objective: decrease the energy consumption of processors
I Constraint: respect a strong deadline

Motivation example
I Application run multiple times, exact characteristics depend on the

workload
I Some settings [Choudhury et al. 2007, Singh et al. 2013] :

compute a (pessimistic) pseudo-schedule offline, adapt it online
I Ideal: compute online (i.e., fast) a solution with low energy

consumption

Problematic
Are there theoretically-guaranteed algorithms that are fast enough to be
executed at run-time?
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Preliminaries
General statement of the problem
I DAG G = (V ,E ) of n tasks of known lengths wj
I m cores, whose speeds can be modified between two tasks
I Strong deadline D
⇒ Minimize the energy

Energy model: DVFS
Power = speedα, for some α > 1

Energy consumed for a task of length wj , run at speed sj

I Execution time: xj = wj/sj
I Energy Ej = xj · sαj = wj · sα−1

j = wα
j /xα−1

j
⇒ Objective: minimize

∑
Ej
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Four variants of the problem
Two scenarios
I Speed&Scheduling – the problem is to:

decide at which speed each task is run;
schedule each task to a core, respecting precedences.

I SpeedScaling – the task-to-core mapping and each core’s
execution order is fixed
The problem is to:

decide the speed of each task

Two speed models
I Continuous speeds: all speeds in [smin, smax ]
I Discrete speeds: choose speeds among v1, . . . , vk

Theoretical guarantees targeted: e.g., 2-approximation
I Deadline is always met (if feasible)
I Energy consumed is at most 2 times the best possible
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Introduction Continuous speeds Discrete speeds Experimental results

Optimal polynomial solution: convex program
[Aupy et al. 2013]

Note: include each core’s order into the precedence constraints
−→ execution time = critical path

core1(1)

core1(2)

core2(1)

core2(2)

core3(1)

core2(3)

Convex program computing the optimal speeds
xj : execution duration of task j (xj = wj/sj)
dj : completion time of task j

min
∑
j∈V

wα
j

xj
α−1

s.t. dj ≤ D, ∀j ∈ V
xj ≤ dj , ∀j ∈ V

dj + xk ≤ dk, ∀(j , k) ∈ E
wj/smax ≤ xj ≤ wj/smin, ∀j ∈ V .
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Optimal linear-time solution for Series-Parallel graphs
[Prasanna Musicus 1996] in an other context

Series-Parallel graph

T

T

Main algorithm idea: each subgraph is equivalent to a single task
I w (T ) = wT

I w (G1 ; G2) = w (G1) + w (G2) : 1 1 = 2

I w (G1 ‖G2)α = w (G1)α + w (G2)α:
1

1
= 21/α

Algorithm sketch (drawback: ignores smin and smax )
1 Compute the equivalent task of G : assign it the speed w (G) /D
2 Propagate the speed assignment through the graph structure

(series: conserve speed, parallel: conserve execution time)
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Introduction Continuous speeds Discrete speeds Experimental results

Approximate solution
similar to [Bampis, Letsios, Lucarelli 2014]

Issue to obtain an approximation-algorithm
I with fixed speeds, scheduling is NP-hard
I need to assume that the deadline is loose to be able to meet it

Theorem
If OPT uses speeds at most smax/2, there is a 2α−1-approximation.

Algorithm sketch
I Solve the previous CP adding the constraints (m = #cores):∑

j∈V
xj/m ≤ D/2 ; dj ≤ D/2 ∀j ∈ V

I Use Graham’s list-scheduling or any such simple algorithm
I If there is some slack towards the deadline, scale down the speeds
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Recall

Results for continuous speeds

Exact Solution Approximate Solution

SpeedScaling Convex Program SP-graphs
(restricted instances)

Speed&Scheduling Convex Program
+ Rounding
+ List Scheduling
(2α−1-approx)

This section: discrete speeds
I v1 ≤ v2 ≤ · · · ≤ vk

I Define r := max
i

vi+1
vi
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Introduction Continuous speeds Discrete speeds Experimental results

Optimal exponential-time solution: ILP
yi,`: boolean variable deciding whether task i is run at speed v`
di: completion time of task i

minimize
∑
i∈V

wi

∑
`≤k

vα−1
` yi,`


di ≤ D ∀i ∈ V∑

`≤k

wi
v`

yi,`

 ≤ di ∀i ∈ V

di +

∑
`≤k

wj
v`

yj,`

 ≤ dj ∀(i , j) ∈ E

∑
`≤k

yi,` = 1 ∀i ∈ V

yi,` ∈ {0, 1} ∀i ∈ V ,∀` ≤ k.
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Approximate solution

Simple algorithm
1 Compute the optimal continuous-speed solution

(with smin = v1, smax = vk)
2 Round up each speed

Note: we can use the fast SP-graph algorithm or the convex program

Theorem
This algorithm is a rα−1-approximation.

Recall: r = max
i

vi+1
vi
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The Speed&Scheduling setting

Optimal exponential-time solution via an ILP

I Needs n(n + m) boolean variables: really prohibitive complexity

Approximate solution

I Combine both previous approximation schemes
(assuming OPT uses speeds at most vk/2)

I Compute the approximate continuous speed solution then round up
the speeds

I Guarantee: (2r)α−1-approximation
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The SpeedScaling setting

Approximate Solution Exact Solution

Continuous speeds SP-graph (exact solution) Convex Program
Discrete speeds SP-G + rounding (rα−1-approx) ILP

Datasets (all SP-graphs)
I E3S (≈ 10 tasks)
I GENOME (Pegasus, 50 to 1000

tasks)
I Discrete speeds: 20 equally

distributed
Results (bottom left is better)
I SP-G: 1ms for 1000 tasks
I CVX: 15ms for 100 tasks
I Discrete speeds: almost optimal

10−2 10−1 100 101 102

100

101

102

103

Solver time [ms]

N
or
m
al
ize

d
en
er
gy
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50 tasks
100 tasks
500 tasks
1000 tasks
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The Speed&Scheduling setting

Approximate Solution Exact Solution

Continuous speeds Convex Program
+ List Scheduling
(2α−1-approx)

Discrete speeds Convex Program
+ Rounding
+ List Scheduling
((2r)α−1-approx)

Prohibitive ILP

Convex Program running time:
I 100 tasks in 25ms
I 500 tasks in 75ms
I 1000 tasks in 140ms
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Conclusion

Results
I SpeedScaling, SP-graphs: almost-optimal solution can be

computed very fast
I Other settings: guaranteed algorithms exist but are slower

benefits depend on the application

Future work
I Integration of such algorithms in a run-time resource management

framework
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