# Energy Minimization in DAG Scheduling on MPSoCs at Run-Time: Theory and Practice

### Bertrand Simon<sup>1</sup> Joachim Falk<sup>2</sup> Nicole Megow<sup>1</sup> Jürgen Teich<sup>1</sup>

University of Bremen, Germany.
 FAU Erlangen-Nürnberg, Germany.

Bologna – January 2020







## Introduction

### **DVFS** (Dynamic Voltage and Frequency Scaling)

- Objective: decrease the energy consumption of processors
- Constraint: respect a strong deadline

#### **Motivation example**

- Application run multiple times, exact characteristics depend on the workload
- Some settings [Choudhury et al. 2007, Singh et al. 2013] : compute a (pessimistic) pseudo-schedule offline, adapt it online
- Ideal: compute online (i.e., fast) a solution with low energy consumption

#### Problematic

Are there theoretically-guaranteed algorithms that are fast enough to be executed at run-time?

# Preliminaries

#### General statement of the problem

- ▶ DAG G = (V, E) of *n* tasks of known lengths  $w_i$
- m cores, whose speeds can be modified between two tasks
- Strong deadline D
- $\Rightarrow$  Minimize the energy



### Energy model: DVFS

*Power* = *speed*<sup>$$\alpha$$</sup>, for some  $\alpha > 1$ 

Energy consumed for a task of length  $w_j$ , run at speed  $s_j$ 

► Execution time: 
$$x_j = w_j/s_j$$
  
► Energy  $E_j = x_j \cdot s_j^{\alpha} = w_j \cdot s_j^{\alpha-1} = w_j^{\alpha}/x_j^{\alpha-1}$   
⇒ Objective: minimize  $\sum E_j$ 

# Four variants of the problem

### Two scenarios

- SPEED&SCHEDULING the problem is to:
  - decide at which speed each task is run;
  - schedule each task to a core, respecting precedences.
- SPEEDSCALING the task-to-core mapping and each core's execution order is fixed The problem is to:
  - decide the speed of each task

### Two speed models

- Continuous speeds: all speeds in [s<sub>min</sub>, s<sub>max</sub>]
- ▶ Discrete speeds: choose speeds among  $v_1, \ldots, v_k$

### Theoretical guarantees targeted: e.g., 2-approximation

- Deadline is always met (if feasible)
- Energy consumed is at most 2 times the best possible



### 2 Continuous speeds

- The SpeedScaling setting
- The Speed&Scheduling setting

#### 3 Discrete speeds

- The SPEEDSCALING setting
- The SPEED&SCHEDULING setting

Introduction

Continuous speeds

Discrete speeds

### Optimal polynomial solution: convex program [Aupy et al. 2013]

Note: include each core's order into the precedence constraints

 $\longrightarrow \ \ \, \text{execution time} = \text{critical path}$ 



### Convex program computing the optimal speeds

 $x_j$ : execution duration of task j ( $x_j = w_j/s_j$ )  $d_j$ : completion time of task j

$$\begin{split} \min \sum_{j \in V} \frac{w_j^{\alpha}}{x_j^{\alpha-1}} \\ \text{s.t.} \quad \frac{d_j \leq D}{x_j \leq d_j}, & \forall j \in V \\ \frac{d_j + x_k \leq d_k}{d_j + x_k \leq d_k}, & \forall (j,k) \in E \\ w_j/s_{max} \leq x_j \leq w_j/s_{min}, & \forall j \in V. \end{split}$$

Introduction

Continuous speeds

Discrete speeds

### Optimal polynomial solution: convex program [Aupy et al. 2013]

Note: include each core's order into the precedence constraints

 $\longrightarrow \ \ \, \text{execution time} = \text{critical path}$ 



### Convex program computing the optimal speeds

 $x_j$ : execution duration of task j ( $x_j = w_j/s_j$ )  $d_j$ : completion time of task j

$$\begin{split} \min \sum_{j \in V} \frac{w_j^{\alpha}}{x_j^{\alpha-1}} \\ \text{s.t.} \quad \frac{d_j \leq D}{x_j \leq d_j}, & \forall j \in V \\ \frac{d_j + x_k \leq d_k}{d_j + x_k \leq d_k}, & \forall (j,k) \in E \\ w_j/s_{\max} \leq x_j \leq w_j/s_{\min}, & \forall j \in V. \end{split}$$

Introduction Continuous speeds Discrete speeds Experimen Optimal linear-time solution for Series-Parallel graphs [Prasanna Musicus 1996] in an other context

### Series-Parallel graph



Main algorithm idea: each subgraph is equivalent to a single task

$$w(T) = w_T$$

$$w(G_1; G_2) = w(G_1) + w(G_2): \longrightarrow 1 \longrightarrow 1 \longrightarrow 2 \longrightarrow 2$$

$$w(G_1 \parallel G_2)^{\alpha} = w(G_1)^{\alpha} + w(G_2)^{\alpha}: \longrightarrow 1 \longrightarrow 2 \longrightarrow 2$$

- **O** Compute the equivalent task of G: assign it the speed w(G)/D
- Propagate the speed assignment through the graph structure (series: conserve speed, parallel: conserve execution time)

Introduction Continuous speeds Discrete speeds Experimen Optimal linear-time solution for Series-Parallel graphs [Prasanna Musicus 1996] in an other context

### Series-Parallel graph



Main algorithm idea: each subgraph is equivalent to a single task

$$w(T) = w_T$$

$$w(G_1; G_2) = w(G_1) + w(G_2): \longrightarrow 1 \longrightarrow 1 \longrightarrow 2 \longrightarrow 2$$

$$w(G_1 \parallel G_2)^{\alpha} = w(G_1)^{\alpha} + w(G_2)^{\alpha}: \longrightarrow 1 \longrightarrow 2 \longrightarrow 2$$

- **O** Compute the equivalent task of G: assign it the speed w(G)/D
- Propagate the speed assignment through the graph structure (series: conserve speed, parallel: conserve execution time)

 Introduction
 Continuous speeds
 Discrete speeds
 Experimer

 Optimal linear-time solution for Series-Parallel graphs
 [Prasanna Musicus 1996] in an other context
 Experimer

#### Series-Parallel graph



Main algorithm idea: each subgraph is equivalent to a single task

- **O** Compute the equivalent task of G: assign it the speed w(G)/D
- Propagate the speed assignment through the graph structure (series: conserve speed, parallel: conserve execution time)

### Optimal linear-time solution for Series-Parallel graphs [Prasanna Musicus 1996] in an other context

### Series-Parallel graph



Main algorithm idea: each subgraph is equivalent to a single task

$$w(T) = w_{T}$$

$$w(G_{1}; G_{2}) = w(G_{1}) + w(G_{2}): \longrightarrow 1 \longrightarrow 1 \longrightarrow 2 \longrightarrow 2$$

$$w(G_{1} || G_{2})^{\alpha} = w(G_{1})^{\alpha} + w(G_{2})^{\alpha}: \longrightarrow 1 \longrightarrow 2 \longrightarrow 2$$

- Compute the equivalent task of G: assign it the speed w(G)/D
- Propagate the speed assignment through the graph structure (series: conserve speed, parallel: conserve execution time)

Introduction Continuous speeds Discrete speeds Experimen Optimal linear-time solution for Series-Parallel graphs [Prasanna Musicus 1996] in an other context

### Series-Parallel graph



Main algorithm idea: each subgraph is equivalent to a single task

$$w(T) = w_T$$

$$w(G_1; G_2) = w(G_1) + w(G_2): \longrightarrow 1 \longrightarrow 1 \longrightarrow 2 \longrightarrow 2$$

$$w(G_1 \parallel G_2)^{\alpha} = w(G_1)^{\alpha} + w(G_2)^{\alpha}: \longrightarrow 1 \longrightarrow 2 \longrightarrow 2$$

- **O** Compute the equivalent task of G: assign it the speed w(G)/D
- Propagate the speed assignment through the graph structure (series: conserve speed, parallel: conserve execution time)

Introduction Continuous speeds Discrete speeds Experimen Optimal linear-time solution for Series-Parallel graphs [Prasanna Musicus 1996] in an other context

### Series-Parallel graph



Main algorithm idea: each subgraph is equivalent to a single task

$$w(T) = w_T$$

$$w(G_1; G_2) = w(G_1) + w(G_2): \longrightarrow 1 \longrightarrow 1 \longrightarrow 2 \longrightarrow 2$$

$$w(G_1 \parallel G_2)^{\alpha} = w(G_1)^{\alpha} + w(G_2)^{\alpha}: \longrightarrow 1 \longrightarrow 2 \longrightarrow 2$$

- **O** Compute the equivalent task of G: assign it the speed w(G)/D
- Propagate the speed assignment through the graph structure (series: conserve speed, parallel: conserve execution time)

 Introduction
 Continuous speeds
 Discrete speeds
 Experimer

 Optimal linear-time solution for Series-Parallel graphs
 [Prasanna Musicus 1996] in an other context
 Experimer

#### Series-Parallel graph



Main algorithm idea: each subgraph is equivalent to a single task

- **O** Compute the equivalent task of G: assign it the speed w(G)/D
- Propagate the speed assignment through the graph structure (series: conserve speed, parallel: conserve execution time)

### Optimal linear-time solution for Series-Parallel graphs [Prasanna Musicus 1996] in an other context

### Series-Parallel graph



Main algorithm idea: each subgraph is equivalent to a single task

$$w(T) = w_{T}$$

$$w(G_{1}; G_{2}) = w(G_{1}) + w(G_{2}): \longrightarrow 1 \longrightarrow 1 \longrightarrow 2 \longrightarrow 2$$

$$w(G_{1} || G_{2})^{\alpha} = w(G_{1})^{\alpha} + w(G_{2})^{\alpha}: \longrightarrow 1 \longrightarrow 2 \longrightarrow 2$$

- Compute the equivalent task of G: assign it the speed w(G)/D
- Propagate the speed assignment through the graph structure (series: conserve speed, parallel: conserve execution time)



### 2 Continuous speeds

- The SpeedScaling setting
- The SPEED&SCHEDULING setting

#### Discrete speeds

- The SPEEDSCALING setting
- The SPEED&SCHEDULING setting

### Approximate solution similar to [Bampis, Letsios, Lucarelli 2014]

### Issue to obtain an approximation-algorithm

- with fixed speeds, scheduling is NP-hard
- need to assume that the deadline is loose to be able to meet it

#### Theorem

If OPT uses speeds at most  $s_{max}/2$ , there is a  $2^{\alpha-1}$ -approximation.

### Algorithm sketch

Solve the previous CP adding the constraints (m = #cores):

$$\sum_{j \in V} oldsymbol{x_j} / m \leq D/2$$
 ;  $oldsymbol{d_j} \leq D/2$   $orall j \in V$ 

- Use Graham's list-scheduling or any such simple algorithm
- If there is some slack towards the deadline, scale down the speeds

### Introduction

### 2 Continuous speeds

- The SPEEDSCALING setting
- The Speed&Scheduling setting

### 3 Discrete speeds

- The SPEEDSCALING setting
- The Speed&Scheduling setting

# Recall

### **Results for continuous speeds**

|                  | Exact Solution | Approximate Solution                                                          |
|------------------|----------------|-------------------------------------------------------------------------------|
| SpeedScaling     | Convex Program | SP-graphs<br>(restricted instances)                                           |
| Speed&Scheduling |                | Convex Program<br>+ Rounding<br>+ List Scheduling<br>$(2^{\alpha-1}$ -approx) |

### This section: discrete speeds

▶ 
$$v_1 \le v_2 \le \cdots \le v_k$$
  
▶ Define  $r := \max_i \frac{v_{i+1}}{v_i}$ 

### Introduction

### Continuous speeds

- The SPEEDSCALING setting
- The Speed&Scheduling setting

#### 3 Discrete speeds

- The SpeedScaling setting
- The SPEED&SCHEDULING setting

# Optimal exponential-time solution: ILP

 $y_{i,\ell}$ : boolean variable deciding whether task *i* is run at speed  $v_{\ell}$  $d_i$ : completion time of task *i* 

$$\begin{array}{ll} \text{minimize } \sum_{i \in V} w_i \left( \sum_{\ell \leq k} v_{\ell}^{\alpha - 1} \boldsymbol{y}_{i, \ell} \right) \\ \boldsymbol{d}_{i} \leq D & \forall i \in V \\ \left( \sum_{\ell \leq k} \frac{w_i}{v_{\ell}} \boldsymbol{y}_{i, \ell} \right) \leq \boldsymbol{d}_{i} & \forall i \in V \\ \boldsymbol{d}_{i} + \left( \sum_{\ell \leq k} \frac{w_j}{v_{\ell}} \boldsymbol{y}_{j, \ell} \right) \leq \boldsymbol{d}_{j} & \forall (i, j) \in E \\ \sum_{\ell \leq k} \boldsymbol{y}_{i, \ell} = 1 & \forall i \in V \\ \boldsymbol{y}_{i, \ell} \in \{0, 1\} & \forall i \in V, \forall \ell \leq k. \end{array}$$

# Approximate solution

#### Simple algorithm

- Compute the optimal continuous-speed solution (with s<sub>min</sub> = v<sub>1</sub>, s<sub>max</sub> = v<sub>k</sub>)
- ② Round up each speed

Note: we can use the fast SP-graph algorithm or the convex program

#### Theorem

This algorithm is a  $r^{\alpha-1}$ -approximation.

Recall: 
$$r = \max_{i} \frac{v_{i+1}}{v_i}$$

### 1 Introduction

### Continuous speeds

- The SPEEDSCALING setting
- The Speed&Scheduling setting

#### 3 Discrete speeds

- The SPEEDSCALING setting
- The SPEED&SCHEDULING setting

# The SPEED&SCHEDULING setting

Optimal exponential-time solution via an ILP

▶ Needs n(n + m) boolean variables: really prohibitive complexity

#### Approximate solution

- Combine both previous approximation schemes (assuming OPT uses speeds at most v<sub>k</sub>/2)
- Compute the approximate continuous speed solution then round up the speeds
- Guarantee:  $(2r)^{\alpha-1}$ -approximation

### Introduction

### Continuous speeds

- The SPEEDSCALING setting
- The Speed&Scheduling setting

#### 3 Discrete speeds

- The SPEEDSCALING setting
- The SPEED&SCHEDULING setting

| Introducti | on Contin         | uous speeds Discrete speeds                                      | Experimental resul | ts |
|------------|-------------------|------------------------------------------------------------------|--------------------|----|
| The        | e SpeedScali      | NG setting                                                       |                    |    |
| -          |                   | Approximate Solution                                             | Exact Solution     |    |
| -          | Continuous speeds | SP-graph (exact solution)                                        | Convex Program     |    |
|            | Discrete speeds   | $SP\text{-}G + rounding \ (\mathit{r}^{\alpha-1}\text{-}approx)$ | ILP                |    |

### Datasets (all SP-graphs)

- ► E3S (≈ 10 tasks)
- GENOME (Pegasus, 50 to 1000 tasks)
- Discrete speeds: 20 equally distributed

### Results (bottom left is better)

- SP-G: 1ms for 1000 tasks
- CVX: 15ms for 100 tasks
- Discrete speeds: almost optimal



# The SPEED&SCHEDULING setting

|                   | Approximate Solution                                                             | Exact Solution  |
|-------------------|----------------------------------------------------------------------------------|-----------------|
| Continuous speeds | Convex Program $+$ List Scheduling $(2^{lpha-1}	ext{-approx})$                   |                 |
| Discrete speeds   | Convex Program<br>+ Rounding<br>+ List Scheduling<br>$((2r)^{\alpha-1}$ -approx) | Prohibitive ILP |

Convex Program running time:

- 100 tasks in 25ms
- 500 tasks in 75ms
- 1000 tasks in 140ms

# Conclusion

### Results

- SPEEDSCALING, SP-graphs: almost-optimal solution can be computed very fast
- Other settings: guaranteed algorithms exist but are slower benefits depend on the application

#### **Future work**

Integration of such algorithms in a run-time resource management framework