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Breaking down the title

DAGs of tasks
7

> Describe many applications

> Used by increasingly popular runtime
schedulers %
(XKAAPI, StarPU, StarSs, ParSEC, ...) T

Parallel scheduling

> Many tasks executed concurrently

Limited available memory (shared-memory platform)

» Simple breadth-first traversal may go out-of-memory

» Prevent dynamic schedulers from exceeding memory

L. Marchal, B. Simon & F. Vivien Parallel Scheduling of DAGs Under Memory Constraints 2/17



Outline

@ Model and maximum parallel memory
@ Memory model
@ Maximum parallel memory/maximal topological cut

© Efficient scheduling with bounded memory
@ Problem definition
o Complexity
@ Heuristics

© Simulation results

@ Conclusion

L. Marchal, B. Simon & F. Vivien Parallel Scheduling of DAGs Under Memory Constraints



Model and maximum parallel memory

Memory model

Task graph weights

> Vertex w;: estimated task duration > Edge m;;: data size
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m parallel memory

del

Task graph weights

> Vertex w;: estimated task duration > Edge m;;: data size

Memory behavior

> Task starts: free inputs (instantaneously)
allocate outputs
> Task ends: outputs stay in memory
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Task graph weights

> Vertex w;: estimated task duration > Edge m;;: data size

Memory behavior

> Task starts: free inputs (instantaneously)
allocate outputs
> Task ends: outputs stay in memory

Emulation of other memory behaviours

> Inputs not freed, additional execution memory: duplicate nodes

wa =10 A, =10
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Model and maximum parallel memory

Maximum memory peak equivalent

Topological cut = partition of the vertices (S, T) with

> Source s€ S and sink te T
> No edge from T to S
> Weight of the cut = sum of all edge weights from Sto T
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Maximum memory peak equivalent

Topological cut = partition of the vertices (S, T) with
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Topological cut — execution state where T nodes are not started yet
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Model and maximum parallel memory

Maximum memory peak equivalent

Topological cut = partition of the vertices (S, T) with

> Source s€ S and sink te T
> No edge from T to S
> Weight of the cut = sum of all edge weights from Sto T

5
5 @@ 1
Topological cut — execution state where T nodes are not started yet

Equivalence in our model between:

> Maximum memory peak (any parallel execution)

> Maximum weight of a topological cut
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Model and maximum parallel memory

Computing the maximum topological cut

Literature
» Minimum cut is polynomial on graphs
> Maximum cut is NP-hard even on DAGs [Lampis et al. 2011]

> Not much for topological cuts

Computing the maximum topological cut on a DAG is polynomial.
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Model and maxi m parallel memory

Maximum topological cut — using LP

A classical min-cut LP formulation

min Z m,-,jd,-,j

(ij)eE
V(i,j)€E, djj=pi—p;
d,'ijO
ps=1, pt=0

> Any graph: integer solution < cut
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Model and maxi m parallel memory

Maximum topological cut — using LP

A classical min-cut LP formulation

maxXx Z m,-,jd,-J

(ij)eE
V(i j)eE, dij=pi-pj
d,'yj =0
ps=1, pt=0

> Any graph: integer solution < cut

(0

> Modify LP: ‘'min’ — ‘max’'; ‘2" — ‘=
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Model and maximum parallel memory

Maximum topological cut — using LP

A classical min-cut LP formulation

maxXx Z m,-,jd,-,j

(if)eE
V(i j)eE, dij=pi-pj
d,'yj =0
ps=1, pt=0

> Any graph: integer solution < cut

> Modify LP: ‘'min’ — ‘max’'; ‘2" — ‘=

In a DAG, any (non-integer) optimal solution = max. top. cut

> Any rounding of the p;'s works (large € S, small € T)
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Model and maximum parallel memory

Maximum topological cut — direct algorithm

» Dual problem: Min-Flow (larger than all edge weights)
> |dea: use an optimal algorithm for Max-Flow

Algorithm sketch

Build a large flow F on the graph G
Consider G with edge weights F;;—m;
Compute a maximum flow maxdiff in G
F — maxdiff is a minimum flow in G

Residual graph — maximum topological cut mijl MinFlow;,;

Complexity: same as maximum flow, e.g., O(|V|2|E|)
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Model and maximum parallel memory

Maximum topological cut — direct algorithm
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Scheduling with bounded memory

Outline

© Efficient scheduling with bounded memory
o Problem definition
o Complexity
@ Heuristics
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Scheduling with bounded memory

Coping with limited memory

Problem
> Allow use of dynamic schedulers
> Limited available memory M

> Keep high level of parallelism
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Scheduling with bounded memory

Coping with limited memory

Problem
> Allow use of dynamic schedulers
> Limited available memory M
> Keep high level of parallelism
Our solution

> Add edges to guarantee that any parallel execution stays below M
» Minimize the obtained critical path

GGl
Mavailable = 10
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bounded memory

Problem definition and complexity

Definition (PARTIALSERIALIZATION of a DAG G under a memory M)

Compute a set of new edges E’ such that:
> G'=(V,EUE’) is a DAG
> MaxTopologicalCut(G') <M
» CritPath(G') is minimized

Theorem (Sethi 1975)

Computing a schedule that minimizes the memory usage is NP-hard.

= finding a DAG G’ with MaxTopologicalCut(G') < M is NP-hard

Theorem
PARTIALSERIALIZATION is NP-hard given a memory-efficient schedule.

Optimal solution computable by an ILP (builds transitive closure)
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Scheduling with bounded memory

Heuristic solutions for PARTIALSERIALIZATION

Compute a max. top. cut (S, T)

[

o ® 0
If weight < M : succeeds &4 v ‘ *o
e - >
Add edge (u,v) with ueT,veS . i
. . . \* //’
w1th01‘1t creating cycles; S ‘ T
or fail

Goto Step 1

Several heuristic choices for Step 3

MinLevels does not create a large critical path

RespectOrder follows a precomputed memory-efficient schedule,
always succeeds

MaxSize targets nodes dealing with large data
MaxMinSize variant of MaxSize
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Simulation results

Outline

© Simulation results
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> x: memory (0 = DFS, 1 = MaxTopCut)
median ratio MaxTopCut / DFS = 1.3

> y: CP / original CP — lower is better
> MinLevels performs best
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Simulation results

Sparse DAGGEN random graphs (25, 50, and 100 nodes)
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> x: memory (0 = DFS, 1 = MaxTopCut)
median ratio MaxTopCut / DFS = 2

> y: CP / original CP — lower is better
> MinLevels performs best, but might fail
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Simulation results

Simulations — Pegasus workflows (LIGO 100 nodes)
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> Median ratio MaxTopCut / DFS = 20
> MinLevels performs best, RespectOrder always succeeds
» Memory divided by 5 for CP multiplied by 3
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@ Conclusion
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Conclusion

Memory model proposed

> Simple but expressive

> Explicit algorithm to compute maximum memory

Prevent dynamic schedulers from exceeding memory
> Adding fictitious dependences to limit memory usage
» Critical path as a performance metric
> Several heuristics (+ ILP)

Perspectives

> Reduce heuristic complexity

> Adapt performance metric to a platform
» Consider more clever schedulers
>

Distributed memory
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