Malleable task-graph scheduling with a practical speed-up model

Loris Marchall
1: LIP, CNRS, INRIA, ENS de Lyon and Univ. de Lyon.

Objectives

Optimize the time performance of multifrontal sparse di-

rect solvers (e.g., MUMPS).

» Computations described by a tree of tasks

» Generalization to Series-Parallel graphs —
e, G=T | G1;G2 | G1 || G2

We aim at:

» Guaranteeing widely used algorithms

» Designing better scheduling algorithms

Why malleable task trees suffice?

1 2

Bertrand Simon* Oliver Sinnen

Contact: bertrand.simon@ens-1lyon.fr

Related work

Frédéric Vivien
2: University of Auckland, NZ.

1

Experimental setup

Coarse-grain picture
» Each task: partial factorization, graph of smaller

sub-tasks

Reason of this abstraction
» Expand all tasks: high complexity to schedule

» Scheduling trees simpler than general graphs

Behavior of coarse-grain tasks
» Parallel and malleable
» Speed-up model — trade-off between:

o Accuracy: fits well the data
o lractability. guaranteed algorithms

Previous work: Prasanna & Musicus model

Non-increasing speed-up and work
» Independent tasks: theoretical FPTAS and practical
2-approximations [Jansen 2004, Fan et al. 2012]

» SP-graphs: = 2.6-approximation [Lepere et al. 2001].
With concave speed-up: (2 + €)-approximation of
unspecified complexity [Makarychev et al. 2014]

Specific speed-up function

» Same model: 2-approximation [Balmin et al. 2013]
named FLOWFLEX (see experimental setup)

> [Kell et al. 2015]: time:%+ (p—1c;
2-approximation for p =3, open for p =4

NP-Completeness of the problem

Third algorithm for comparison: FLOWFLEX
» 2-approximation from [Balmin et al. 2013] to schedule

Malleable Flows of MapReduce Jobs

» Solve the problem on an infinite number of processors

» Downscale the allocation on intervals when it is needed

Two datasets
» SYNTH: synthetic SP-graphs with §; = a x w;

» TREES: assembly trees of sparse matrices, §; = a x w;.

Validation of GREEDY-FILLING

Complexity depending on the model
» Malleability + perfect parallelism = P

» Adding thresholds = NP-complete
> Arguably complex proof [Drozdowski and Kubiak 1999]

Contribution
» New NP-completeness proof

The widely used PROPMAPPING

Focus on two quantities

time(1 proc.)
time(p proc.)

speed-up(p) = ‘ work(p) = p-time(p proc.)

Study model: speed-up(p) = p©
» Average Accuracy ©

» Rational number of processors @
» Optimal algorithms for Series-Parallel graph ©
» No guarantees for distributed platforms @

» Task finish times complex to compute @

speed-up 4 a=1
perfect parallelism

a=0
| no parallelism
1 processors

A simple yet practical model

Parallel malleable tasks

» Perfect parallelism up to a threshold:
speed-up 4

51’ Processors

» Total work: w; — Threshold: 6;

» Rational allocation for free (McNaughton's
wrap-around rule)

Simple allocation for trees or SP-graphs
» On a series composition G = (Gy; G2): give all available
processors to Gy, then to Go

» On (Gy || Go): give a constant share to G;, proportional
to its weight w;

> Algorithm on graph G with g processors:

PROPMAPPING (G, q)

if G=Gy;Go;...;Gi then
LVZ., pPi—(

Call PROPMAPPING (G;, p;) for each G;

if G=G1 || Go |l - || Gk then
LVZ', Pi = qw,/Z LU]'

> Then schedule each task on p; processors as soon as it
is ready

Notes
» Moldable schedule (constant allocation)

» Unaware of task thresholds

Theorem: PROPMAPPING is a 2-approximation.

A new strategy: GREEDY-FILLING

Algorithm
~ Assign priorities to tasks (usually bottom-level)

» Consider free tasks by decreasing priority

» Greedily insert each task in the schedule:

o Compute the earliest starting time
o Pour task into the available processor space,
respecting thresholds

lllustration

initial profile task insertion final profile
p
L
A A
& &
> > >
time time time

Theorem: GREEDY-FILLING is a 2-approximation.

Results on SYNTH

1.4 -

13- Algorithm
GREEDY-FILLING
PROPMAPPING
FLOWFLEX

p—t
[
I

—
-
I

| | | |
0.0 2.5 5.0 7.5 10.0
Normalized number of processors

Normalized makespan
p—t
DO
|

Legend
Y axis: makespan normalized by the lower bound: LB = max(CP, W/p)

X axis: number of processors normalized by

makespan with all §; =1 and p = o0

e makespan with allé; =1and p =1

Comments
» Plot: mean + ribbon with 90% of the results

~ Small/large number of processors: similar results as the
problem is simple
~ 25% of gain

» GREEDY-FILLING:
< 20% from the LB

Results on TREES

=
Q1.6 -
>
%é Algorithm
g1.4- GREEDY-FILLING
8 PROPMAPPING
N1.2-
= FLOWFLEX
=
31.0- P
Z | | | |
4 32 256 2048
Normalized number of processors
Comments

» Results shape depends a lot on the matrix

» Here: one matrix with different ordering and
amalgamation parameters

» GREEDY-FILLING is (almost always) better than both
others

>~ Smaller maximum gain (around 15%)

Conclusion

On the algorithms
» PROPMAPPING: does not take advantage of
malleability

» FLOWFLEX: produces gaps that cannot be filled
afterwards

» GREEDY-FILLING: simple, greedy, close to the lower
bound

On the model
» Simplest model to account for limited parallelism

» Still NP-complete

» Possible to derive theoretical guarantees
(2-approximation algorithms)

*x %

N

22,
— i m— @DELYON

ENS DE LYON

informatiques g% mathématiques

2L —

IS R AGENCE NATIONALE DE LA RECHERCHE

THE UNIVERSITY OF AUCKLAND

NEW ZEALAND

i

bertrand.simon@ens-lyon.fr

