
Malleable task-graph scheduling with a practical speed-up model
Loris Marchal1 Bertrand Simon1 Oliver Sinnen2 Frédéric Vivien1

1: LIP, CNRS, INRIA, ENS de Lyon and Univ. de Lyon. 2: University of Auckland, NZ.
Contact: bertrand.simon@ens-lyon.fr

Objectives

Optimize the time performance of multifrontal sparse di-
rect solvers (e.g., MUMPS).
Ï Computations described by a tree of tasks
ÏGeneralization to Series-Parallel graphs –
i.e., G = T | G1;G2 | G1 ∥G2

We aim at:
ÏGuaranteeing widely used algorithms
ÏDesigning better scheduling algorithms

Why malleable task trees suffice?

Coarse-grain picture
Ï Each task: partial factorization, graph of smaller
sub-tasks

POTRF-1

TRSM-4-1 TRSM-2-1 TRSM-3-1

GEMM-4-2-1

GEMM-4-2-0 GEMM-4-3-0

GEMM-4-3-1

GEMM-4-1-0

TRSM-1-0

GEMM-2-1-0 GEMM-3-1-0

GEMM-3-2-1

TRSM-4-0

POTRF-0

TRSM-3-0TRSM-2-0

GEMM-3-2-0

SYRK-1-1-0

SYRK-4-4-0

SYRK-4-4-1

SYRK-2-2-0

SYRK-2-2-1 SYRK-3-3-1

SYRK-3-3-0

Reason of this abstraction
Ï Expand all tasks: high complexity to schedule
Ï Scheduling trees simpler than general graphs

Behavior of coarse-grain tasks
Ï Parallel and malleable
Ï Speed-up model → trade-off between:

Accuracy: fits well the data
Tractability: guaranteed algorithms

Previous work: Prasanna & Musicus model

Focus on two quantities

speed-up(p) = time(1 proc.)
time(p proc.)

∣∣ work(p) = p ·time(p proc.)

Study model: speed-up(p) = pα

ÏAverage Accuracy
Ï Rational number of processors
ÏOptimal algorithms for Series-Parallel graph
ÏNo guarantees for distributed platforms
ÏTask finish times complex to compute

1

1

speed-up

processors

α= 1
perfect parallelism

0 <α< 1

α= 0
no parallelism

A simple yet practical model

Parallel malleable tasks
Ï Perfect parallelism up to a threshold:

processors

speed-up

δi

slop
e=1

ÏTotal work: wi — Threshold: δi

Ï Rational allocation for free (McNaughton’s
wrap-around rule)

Related work

Non-increasing speed-up and work
Ï Independent tasks: theoretical FPTAS and practical
2-approximations [Jansen 2004, Fan et al. 2012]

Ï SP-graphs: ≈ 2.6-approximation [Lepère et al. 2001] .
With concave speed-up: (2+ε)-approximation of
unspecified complexity [Makarychev et al. 2014]

Specific speed-up function
Ï Same model: 2-approximation [Balmin et al. 2013]
named FLOWFLEX (see experimental setup)

Ï [Kell et al. 2015] : time = wi
p + (p −1)c;

2-approximation for p = 3, open for p ≥ 4

NP-Completeness of the problem

Complexity depending on the model
ÏMalleability + perfect parallelism ⇒ P
ÏAdding thresholds ⇒ NP-complete
ÏArguably complex proof [Drozdowski and Kubiak 1999]

Contribution
ÏNew NP-completeness proof

The widely used PROPMAPPING

Simple allocation for trees or SP-graphs
ÏOn a series composition G = (G1;G2): give all available
processors to G1, then to G2

ÏOn (G1 ∥G2): give a constant share to Gi , proportional
to its weight wi

ÏAlgorithm on graph G with q processors:

PROPMAPPING (G, q)
if G =G1;G2; . . . ;Gk then
∀i , pi ← q

if G =G1 ∥G2 ∥ · · · ∥Gk then
∀i , pi = qwi /

∑
w j

Call PROPMAPPING (Gi , pi) for each Gi

ÏThen schedule each task on pi processors as soon as it
is ready

Notes
ÏMoldable schedule (constant allocation)
ÏUnaware of task thresholds

Theorem: PROPMAPPING is a 2-approximation.

A new strategy: GREEDY-FILLING

Algorithm
ÏAssign priorities to tasks (usually bottom-level)
Ï Consider free tasks by decreasing priority
ÏGreedily insert each task in the schedule:

Compute the earliest starting time
Pour task into the available processor space,
respecting thresholds

Illustration
initial profile

time

p

bus
y

task insertion

time

p

bus
y

ws

δs

final profile

time

p

bus
y

Theorem: GREEDY-FILLING is a 2-approximation.

Experimental setup

Third algorithm for comparison: FLOWFLEX

Ï 2-approximation from [Balmin et al. 2013] to schedule
Malleable Flows of MapReduce Jobs

Ï Solve the problem on an infinite number of processors
ÏDownscale the allocation on intervals when it is needed

Two datasets
Ï Synth: synthetic SP-graphs with δi =α×wi

Ï Trees: assembly trees of sparse matrices, δi =α×wi .

Validation of GREEDY-FILLING

Results on SYNTH

1.0

1.1

1.2

1.3

1.4

0.0 2.5 5.0 7.5 10.0
Normalized number of processors

N
o
rm

a
li
ze
d
m
ak

es
p
an

Algorithm

Greedy-Filling

PropMapping

FlowFlex

Legend
Ï Y axis: makespan normalized by the lower bound: LB = max

(
CP , W /p

)
Ï X axis: number of processors normalized by

para = makespan with all δi = 1 and p =∞
makespan with all δi = 1 and p = 1

Comments
Ï Plot: mean + ribbon with 90% of the results
Ï Small/large number of processors: similar results as the
problem is simple

Ï GREEDY-FILLING: ≈ 25% of gain
< 20% from the LB

Results on TREES

1.0

1.2

1.4

1.6

4 32 256 2048
Normalized number of processors

N
or
m
a
li
ze
d
m
ak

es
p
an

Algorithm

Greedy-Filling

PropMapping

FlowFlex

Comments
Ï Results shape depends a lot on the matrix
ÏHere: one matrix with different ordering and
amalgamation parameters

Ï GREEDY-FILLING is (almost always) better than both
others

Ï Smaller maximum gain (around 15%)

Conclusion

On the algorithms
Ï PROPMAPPING: does not take advantage of
malleability

Ï FLOWFLEX: produces gaps that cannot be filled
afterwards

Ï GREEDY-FILLING: simple, greedy, close to the lower
bound

On the model
Ï Simplest model to account for limited parallelism
Ï Still NP-complete
Ï Possible to derive theoretical guarantees
(2-approximation algorithms)

bertrand.simon@ens-lyon.fr

