
The I/O Complexity of Computing Prime Tables

Michael A. Bender1, Rezaul Chowdhury1, Alex Conway2,
Martı́n Farach-Colton2, Pramod Ganapathi1, Rob Johnson1,
Samuel McCauley1, Bertrand Simon3, and Shikha Singh1

1 Stony Brook University, Stony Brook, NY 11794-2424, USA.
{bender,rezaul,pganapathi,rob,smccauley,shiksingh}@cs.stonybrook.edu

2 Rutgers University, Piscataway, NJ 08854, USA.
{farach,alexander.conway}@cs.rutgers.edu

3 LIP, ENS de Lyon, 46 allée d’Italie, Lyon, France.
bertrand.simon@ens-lyon.fr

Abstract. We revisit classical primes sieves and analyze their performance in the
external-memory model. Most prior sieves are analyzed in the RAM model, where
the focus is on minimizing both the total number of operations and the size of
the working set. One reason for parameterizing by working-set size is that if the
working set fits in RAM, then there is a better chance that the sieve has good I/O
performance.

We analyze our algorithms directly in terms of I/Os and operations. Unlike in the
RAM model, where permutation is trivial, in the external-memory model, permu-
tation can be the most expensive aspect of sieving. We show how to implement
classical sieves so that they have both good I/O performance and good RAM
performance, even when the problem size N becomes huge—superpolynomially
larger than RAM. Towards this goal, we give two I/O-efficient priority queues that
are optimized for the number of operations incurred by these sieves.

Keywords: External Memory Algorithms, Prime Tables, Sorting, Priority Queues

1 Introduction
According to Fox News [20], “Prime numbers, which are divisible only by themselves
and one, have little mathematical importance. Yet the oddities have long fascinated
amateur and professional mathematicians.” Indeed, finding prime numbers has been the
subject of intensive study for millennia.

Prime-number-computation problems come in many forms, and in this paper we
revisit the classical (and Classical) problem of computing prime tables: how efficiently
can we compute the table P [a, b] of all primes from a to b and the table P [N] = P [2, N].
Such prime-table-computation problems have a rich history, dating back 23 centuries to
the sieve of Eratosthenes [17, 27].

Until recently, all efficient prime-table algorithms were sieves, which use a partial
(and expanding) list of primes to find and disqualify composites [6, 8, 15, 27]. For
example, the sieve of Eratosthenes maintains an array representing 2, . . . , N and works
by crossing off all multiples of each prime up to

√
N starting with 2. The surviving

numbers, those that haven’t been crossed off, comprise the prime numbers up to N .
Polynomial-time primality testing [2, 18] makes another approach possible: indepen-

dently test each i ∈ {2, . . . , N} (or any subrange {a, . . . , b}) for primality. Nevertheless,
sieving steps can be used to cheaply eliminate many candidates before the relatively

expensive tests are performed, thus improving their performance. This is a feature of
the sieve of Sorenson [28] (discussed in Section 5), and can also be used to improve the
efficiency of AKS [2] when implemented over a range.

Prime-table algorithms are generally compared according to two criteria [6, 23, 24,
27, 28]. One is the standard run-time complexity, that is, the number of operations such
algorithms take in RAM. However, when computing very large prime tables that do not
fit in RAM, such a measure may be a poor predictor of performance. Therefore, there
has been a push to reduce the working-set size, that is, the size of memory used other
than the table itself [6, 12, 28]. The idea is that if the working-set size is smaller, it will
fit in memory for larger N , thus allowing larger prime tables to be computed efficiently.

Sieves and primality testing offer a tradeoff between the number of operations and
the working-set size of prime-table algorithms. For example, the sieve of Eratosthenes
performs O(N log logN) operations on a RAM but uses a working space of size O(N).
The fastest primality tests take polylogarithmic time in N , and so run in O(NpolylogN)
time, but enjoy polylogarithmic working space. Sieves are also less effective at computing
T [a, b]. For primality-test algorithms, one simply checks the b− a+ 1 candidate primes,
whereas sieves generally require computing many primes smaller than a.

A small working set does not guarantee a fast algorithm for two reasons. First,
eventually even slowly growing working sets will be too big for RAM. But more
importantly, even if a working set is small, an algorithm can still be slow if the output
table is accessed with little locality of reference. This run-time versus working-set-size
analysis has lead to a proliferation of prime-table algorithms that are hard to compare.

In this paper, we analyze a variety of algorithms in terms of the number of block
transfers they induce, in addition to the number of operations. We use the standard
disk access machine (DAM) model [1] (also called the external-memory model or I/O
model). For out-of-core computations, these block transfers are page faults, and for
smaller computations, they are cache misses. The DAM model is often more predictive
of the efficiency of an algorithm than the size of the working set or of the instruction
count, since it directly counts all I/Os, both on the working set and the output array.

Let’s begin by analyzing the sieve of Eratosthenes. Each prime is used in turn to
eliminate composites, so the ith prime pi touches all multiples of pi in the array. If
pi < B, every block is touched. As pi gets larger, every dpi/Beth block is touched. We

bound the I/Os by
∑√N

i=2 N/(Bdpi/Be) ≤ N log logN . In short, this algorithm exhibits
essentially no locality of reference and for large N , most instructions induce I/Os.

As a lead-in to our work in Section 2, we can improve the I/O complexity of the
sieve of Eratosthenes as follows. Compute the primes up to

√
N recursively. Then for

each prime, make a list of all its multiples. The total number of elements in all lists is
O(N log logN). Sort, using an I/O-optimal sorting algorithm, and remove duplicates:
this is the list of all composites. Take the complement of this list. The total I/O-complexity
is dominated by the sorting step, so the time is O(N

B (log logN)(logM/B
N
B)). Although

this is a considerable improvement in the number of I/Os, it represents a slowdown in
the number of operations, which increases by a log factor to O(N logN log logN).

In our analysis of the I/O complexity of diverse prime-table algorithms in this
paper, one thing becomes clear. All known fast algorithms produce prime numbers,
or equivalently composite numbers, out of order. Indeed, it seems to be the careful

2

representation of integers according to some order other than by value that allows for
sublinear sieves.

Consequently, the resulting primes or composites need to be permuted. In RAM,
permuting values (or equivalently, sorting small integers) is trivial. In external memory,
permuting values is essentially as slow as sorting [1]. Therefore, our results will involve
sorting bounds. Until an in-order sieve is produced, all fast external-memory algorithms
are likely to involve sorting.

Our main result is a collection of data structures based on buffer trees [3] and
external-memory priority queues [3–5] that allow prime tables to be computed quickly,
with less computation than sorting implies.

1.1 Background and Related Work
In this section we discuss some previous work on prime sieves. For a more extensive
survey on prime sieves, we refer readers to [27].

Much of previous work on sieving has focused on optimizing the sieve of Er-
atosthenes. Recall that the original sieve uses O(N) working space and performs
O(N log logN) operations. The notion of chopping up the input into intervals and
sieving on each of them, referred to as the segmented sieve of Eratosthenes [8], is
frequently used in practice [6, 10, 12, 26, 27]. It performs the same number of operations
as the original but with only O(

√
N) working space. On the other hand, linear variants

of the sieve [9,15,19,25] improve the operation count by aΘ(log logN) factor toO(N),
but also require a working set of Θ(N); see Section 3.

Recent advances in sieving use new approaches to achieve better performance. We
discuss the sieves of Atkin and Sorenson in Sections 4 and 5.

Alternatively, a primality testing algorithm such as AKS [2] can be used to test the
primality of each number directly. Using AKS leads to very small working set size but a
large computation cost. On the other hand, the sieve of Sorenson uses a hybrid sieving
approach, including elements of both sieving and direct primality testing. This results in
polylogarithmic working space, but a larger RAM complexity (see Section 5 for details).

A common technique to increase sieve efficiency is a wheel sieve. A wheel sieve
preprocesses a large set of potential primes, quickly eliminating composites with small
divisors. Specifically, a wheel sieve begins with a number W , which is a product of the
first p primes (for some p). All multiples less than W of the first p primes are marked.
Note that if x < W is composite, then x + W is composite as well (since x and W
must share a divisor). Thus we iterate through each interval of W consecutive potential
primes, marking off certain composites. Since this is just a scan, it takes at most linear
work and I/Os, and marks off all composites divisible by one of the first p primes. We
will use this technique in Sections 3 and 4. See, for example, [6] for more details.

Previously, Arge and Thorup created a priority queue that is simultaneously efficient
in RAM and external memory [5]. We use this data structure as a black box in Sections 2
and 4. Their results also provide an alternative to our priority queue in Section 3.

Specifically, the bounds in Theorem 3 can be achieved by both Arge and Thorup’s
priority queue, and the priority queue presented in Section 3; however, there are several
distinctions. The data structure in [5] requiresM < N/2 (an upper bound onM) whereas
ours requires

√
M/B > logM/B N/B (a lower bound on M). Thus, the approaches are

complimentary, covering different ranges of M while achieving the same bounds.

3

Arge and Thorup’s priority queue also differs substantially in structure. Their priority
queue is based on integer sorting techniques to lower the RAM complexity, whereas
ours uses properties of our specific sequence of inserts. Thus our priority queue avoids
the heavy machinery of integer sorting, but is only applicable in this specific context. It
would be interesting to further explore the relationship between these techniques.

1.2 External-Memory Model and Prime Tables
We analyze our sieves using the external memory or disk-access machine (DAM) model
of Aggarwal and Vitter [1]. The DAM model focuses on the block transfers between any
two levels of the memory hierarchy. In this paper, we denote the smaller level by RAM
or main memory and the larger level by disk or external memory.

We use the RAM model for counting operations. It costs O(1) to compare, multiply,
or add machine words. As in the standard RAM, a machine word has Θ(logN) bits.

The prime table P [N] is represented as a bit array that is stored on disk and needs
to be filled in. We say that P [i] = 1 means that i is prime and P [i] = 0 means that i is
composite. We are interested in values of N , such that P [N] is too large to fit in main
memory. Thus, the prime table fills Θ(N/ logN) words.

RAM is divided into M words. Disk is modeled as arbitrarily large. Data is trans-
ferred between RAM and Disk in blocks of size B words (Θ(B logN) bits). On a
DAM (rather than a RAM), performance is measured in terms of block transfers, and
computation is modeled as free [1, 29].

In this paper, we are interested in both the I/O complexity CI/O and the RAM com-
plexity CRAM. We indicate an algorithm’s performance using the notation 〈CI/O, CRAM〉.
For example, the array implementation of the sieve of Eratosthenes can be shown to run
in 〈Θ(N), Θ(N log logN)〉.

If the problem size is large (N = Ω(M2)), other sieves perform poorly as well. In
this case, segmenting the sieve of Eratosthenes does not lead to any improvements, and
the sieve of Atkin requires 〈O(N/ log logN), O(N/ log logN)〉.

In contrast, a primality-checking sieve based on AKS runs in
〈Θ (N/(B logN)) , Θ(N logcN)〉, as long as M = Ω (logcN), a factor of
B logN better in memory transfers but nearly logcN worse in terms of operations.4

1.3 Our Contributions
We present data structures for four main sieves with the objective of optimizing both the
number of I/Os and the operation count. Our algorithms work even when M � N . We
consider the sieve of Eratosthenes [17], the linear sieve of Eratosthenes [15], the sieve of
Atkin [6], and the sieve of Sorenson [28].

We use the notation SORT (x) = O(x
B logM/B

x
B). Thus, the I/O lower bound of

permuting x elements can be written as min(SORT (x) , x) [1].
We summarize our main results below.

1. Sieve of Eratosthenes. We show that the standard sieve of Eratosthenes can be
implemented to run in 〈SORT (N) , O(N logM/B N + N log logN log logM)〉

4 Here the representation of P [N] matters most, because the I/O complexity depends on the size
(and cost to scan) P [N]. For most other sieves in this paper, P [N] is represented as a bit array
and the I/O-cost to scan P [N] is a lower-order term.

4

p← 2; v′ ← 2; k ← p; v ← 2;
print p; Q.INSERT(〈k, k2〉);
while v ≤ N do
〈k, v〉 ← Q.DELETEMIN();
if v = v′ + 2 then

p← v − 1; print p;
Q.INSERT(〈p, p2〉)

v′ ← v; Q.INSERT(〈k, v + k〉)

primes in

 220
, 221

primes in

 221
, 222

primes in

 22(log log 𝑁)−1
, 22log log 𝑁

𝑄1

𝑄2

𝑄log log 𝑁

values in 𝑄′ are the minimum priority
values from 𝑄1, 𝑄2, … , 𝑄log log 𝑁

𝑄′

𝑄

Fig. 1. (a) Original sieve of Eratosthenes using a priority queue, (b) A key-sensitive priority queue.

cost, under the assumption that M = Ω
(
B log1+ε logN

)
for any constant ε > 0.

We achieve these bounds using a new priority queue data structure in which the
cost of any operation on an item with key k depends only on k instead of the total
number of items in the data structure (as in standard priority queues).

2. Linear sieve of Eratosthenes. We implement the linear sieve
of Eratosthenes using a buffer-tree-like data structure in
〈SORT (N/ log logN) , O((N/ log logN) logM/B(N))〉 under the assump-
tion that

√
M/B = Ω(max{logM/B(N

B) , log2
M/B(N

B)/ log logN}).
3. Sublinear sieve of Atkin. We show that the sublinear sieve of Atkin can be

implemented using I/O- and RAM- efficient priority queues [5] to run in〈
SORT (N/ log logN) , O

((
N

log log N

)
(logM/B(N) + log logM)

)〉
.

4. Sieve of Sorenson. We analyze the sieve of Sorenson in external memory and show
that it runs in 〈O(N/B), O(Nπ(p))〉, where π(p) denotes the smallest i such that
the pseudosquare Lpi

> N/(i log2N), where pi is the ith prime. We also show that
given the availability of pseudosquare tables, this sieve can be adapted to sieve the
interval [a, b] in 〈O(1 + (b− a+ π(p) log2 b)/B), O((b− a)π(p) + π(p) log2 b)〉.

2 Sieve of Eratosthenes
In this section we show that the sieve of Eratosthenes can be implemented to achieve
I/O- and RAM-efficiency simultaneously using sublinear space. We start with a standard
priority queue based implementation of the sieve (shown in Figure 1(a)), and show
that by using a new data structure which we call a key-sensitive priority queue, we can
achieve sorting bound in I/Os without sacrificing RAM performance.

We start by analyzing the performance of the sieve using the recently proposed and
only known RAM-efficient external-memory priority queue from [5]. We then observe
that the smaller the prime the larger the number of priority queue operations performed
on it, and so we can potentially improve the performance of the algorithm by reducing
the cost of operations on smaller primes.
Sieve of Eratosthenes using a RAM-efficient external-memory priority queue. The
sieve of Eratosthenes can be implemented efficiently using the priority queue of Arge and
Thorup as a black box [5]. We describe this in detail in Appendix C.1. This achieves a per-
formance of 〈SORT (N log logN) , O(N log logN(logM/B N + log logM))〉. How-
ever, we can shave off the log logN factor using a new type of priority queue.

5

Sieve of Eratosthenes using a key-sensitive priority queue. In a key-sensitive priority
queue the amortized access cost of an operation on an item with key k depends on
k instead of the size of the data structure. This property is useful in improving the
performance of the folklore priority-queue-based implementation of sieve of Eratosthenes
(given in Figure 1(a)). In that implementation, the number of priority queue operations
performed on items with a given prime k as the key varies inversely with k. Thus, a
reduction in the cost of operations on smaller primes has the potential of reducing the
total cost of all operations. Indeed, we use such a priority queue to achieve sorting bound
on I/Os in the sieve of Eratosthenes.

A key-sensitive priority queue Q has two parts—the top part consisting of
a single internal-memory priority queue Q′, and the bottom part consisting of
dlog logNe external-memory priority queues Q1, Q2, . . . , Qdlog log Ne. Priority queues
store 〈key, value〉 pairs where key is an integer in [1, N] and value is the priority of
the item. For our sieving application, key will be a prime in [1,

√
N] and value will be

a multiple of that prime. For any given key there will be at most one 〈key, value〉 pair
in the entire data structure.

Each Qi in the bottom part of Q is a RAM-efficient external-memory priority
queue [5] that stores 〈k, v〉 pairs such that k is a prime in [22i

, 22i+1

). Hence, Qi will
contain fewer than Ni = 22i+1

items. Then with a cache of size M , Qi will support
insert and delete-min operations in 〈O((logM/B Ni)/B), O(logM/B Ni + log logM)〉
amortized cost [5]. But note that in Qi, each key satisfies log k = Θ (logNi). Thus the
cost reduces to 〈O((logM/B k)/B), O(logM/B k+ log logM)〉 for an item with key k.
Though we divide the cache equally among all Qi’s, the asymptotic cost per operation
remains unchanged assuming M > B(log logN)1+ε for some constant ε > 0.

The queue Q′ in the top part will include only the item with the smallest value from
each Qi. So the size of Q′ will be Θ (log logN). We use the dynamic integer set data
structure from [21] to implement Q′ so that insert, delete and delete-min operations on
Q′ can be supported in O (1) time each using only O (log n) space (in words). We also
maintain an array A[1 : dlog logNe] such that A[i] stores Qi’s contributed item to Q′ so
that we can access it constant time.

The priority queue Q only needs to support insert and delete-min operations. To
perform an delete-min we extract the smallest item from Q′, check its key to find the
Qi it came from, extract the smallest item from that Qi and insert it into Q′. To insert
an item we first check its key to determine its destination Qi, compare it with the item
in A[i], and depending on the result of the comparison we either insert the new item
directly into Qi or move Qi’s current item in Q′ to Qi and insert the new item into Q′.
The following lemma summarizes the performance bounds of the operations on Q.
Lemma 1. Let each Qi be a RAM-efficient external-memory PQ as described in
[5], and let Q′ be a priority queue based on the dynamic integer set data struc-
ture given in [21]. Then in the resulting data structure, the amortized cost of
insert on an item with key k is 〈O((logM/B k)/B), O(logM/B k)〉 and delete-
min is 〈O((logM/B k)/B), O(logM/B k + log logM)〉, assuming M > logN +

B(log logN)1+ε for any constant ε > 0.

We use this key-sensitive priority queue to efficiently implement the sieve of Er-
atosthenes. The following theorem follows from the observation that a prime p will be

6

involved in Θ (N/p) priority queue operations in Q, and because it is known that there
are approximately

√
N/(ln(

√
N)− 1) prime numbers in [1,

√
N] [7], and the i-th such

prime number is approximately i ln i [16].

Theorem 1. Using the priority queue from Lemma 1, the sieve of Eratosthenes costs
〈SORT (N) , O(N(logM/B N + log logM log logN))〉 and uses O(

√
N) space, pro-

vided M > logN +B(log logN)1+ε for some constant ε > 0.

3 Linear Sieve of Eratosthenes
There are several variants of the sieve of Eratosthenes [9, 14, 15, 19] that perform O(N)
operations by only marking each composite exactly once. See [25] for a survey.

Even though each composite is marked exactly once, resulting in O(N) operations,
many of these algorithms have poor data locality. The marking requires large jumps
around the array, leading to O(N) I/Os—very poor locality.

In this section, we improve the locality of such linear sieves, while also taking
advantage of the bit-complexity of words to improve the performance further. We use a
buffer-tree-like data structure (adapted from Arge [3]) to improve the locality, resulting
in a cost of 〈SORT (N/ log logN) , O((N logM/B N/ log logN)〉.

We focus on one of the linear variants, the linear sieve algorithm by Gries and
Misra [15], henceforth referred to as the linear sieve of Eratosthenes.5 The linear sieve
of Eratosthenes is based on the following fundamental property of composite numbers.

Theorem 2 ([15]). Each composite C can be represented uniquely as C = prq where p
is the smallest prime factor of C, and p does not divide q (unless p = q).

C ← {1}; p← 1;
while p ≤

√
N do p← InvSuccC(p); q ← p;

while q ≤ N/p do
for r = 1, 2, . . . , logp(N/q) do
InsertInC(prq);

q ← InvSuccC(q);
return [1;N] \ C;

Algorithm 1: Linear SoE

Thus, each composite has a unique
normal form based on p, q and r. Crossing
off the composites in a lexicographical
order based on these (p, q, r) ensures that
each composite is marked exactly once.
Thus the RAM complexity is O(N).

Algorithm 1 describes the linear sieve in terms of subroutines. It builds a set C of
composite numbers, then returns its complement.

The subroutine InsertInC(x) inserts x in C. Inverse successor (InvSuccC(x))
returns the smallest element larger than x that is not in C.

While the RAM complexity is an improvement by a factor log logN over the classic
sieve of Eratosthenes, the algorithm (thematically) performs poorly in the DAM model.
The overall complexity of this algorithm is 〈O (N) , O (N)〉. In the rest of the section
we improve the I/O complexity while maintaining good RAM performance.
Using a buffer-tree-like structure. As a first step, we introduce the classical buffer tree
of Arge [3]; we will then modify the structure to improve the bounds of the linear sieve.
We give a high-level overview of the data structure here; for details see Appendix A.

The classical buffer tree has branching factor M/B, with a buffer of size
M at each node. We assume a complete tree for simplicity, so its height is

5 Note that the other linear-sieve variants, such as [9, 14, 19] share the same underlying data-
structural operations as the sieve of Gries and Misra.

7

dlogM/B N/Me = O(logM/B N/B). Newly-inserted elements are placed into the
root buffer. If the root buffer is full of M elements, all of its elements are flushed:
sorted, and then placed in their respective children; this takes O(M/B) I/Os and
O(M logM) RAM complexity. This process is repeated recursively for any newly-
full buffers. Since each element is only flushed to one node at each level, and the
amortized cost of a flush is 〈O(1/B), O(logM)〉, the cost to flush all elements is
〈O(N/B logM/B N/B), O(N logN)〉.

Inverse successor can be performed by searching within the tree. However, these
searches are very expensive, as we must search every level of the tree—it may be
that a recently-inserted element changed the inverse successor. Thus it costs at least
〈O(M/B logM/B N/B), O(M logM/B N/B)〉 for a single inverse successor query.

To achieve better bounds, we need to improve the inverse successor time to match
the insert time. At the same time, we improve the computation time considerably; we
only do O(B) computations per I/O, the best possible for a given I/O bound.

As a first step, we perform a wheel sieve using the primes up to
√

logN . By an
analogue of Merten’s Therem, this leaves only N/ log logN candidate primes. This
reduces the number of insertions into the buffer tree.

To avoid the I/Os along the search path for the inverse successor queries, our buffer
tree has branching factor

√
M/B rather than M/B, doubling the height. We partition

each buffer into
√
M/B subarrays of size

√
MB; one for each child. Then as we scan

the array, we can store the path from the root to the current leaf in
√
MB logM/B N/B

words. If
√
M/B > logM/B N/B this path fits in memory. Thus the inverse successor

queries can avoid the path-searching I/O cost, without affecting the amortized insert cost.
Next, since the elements of the leaves are consecutive integers, each can be encoded

using a single bit, rather than an entire word. Since we use the word RAM model
(Section 1.2), we can read Θ(B logN) of these bits in a single block transfer.

Storing the elements in a bit array could potentially speed up queries, but only if we
can guarantee that the inverse successor can always be found by scanning only the bit
array. During an inverse successor scan, we maintain the path in memory; thus, we can
flush all elements along the path without any I/O cost. This guarantees that we can get
the correct inverse successor by scanning the array, maintaining the path as we scan.

Finally, since our array is static, we can improve the computation required during a
flush. Specifically, since the leaves divide the array evenly, we can calculate the child
being flushed to using modular arithmetic (see Appendix A for details).

In total, we insert N/ log logN elements into the buffer tree. Each must be flushed
through O(logM/B N/B) levels, where a flush costs O(1/B) amortized I/Os and O(1)
computation. The inverse successor queries must scan through N log logN elements
(by the analysis of the sieve of Eratostheses), but due to our bit array representation this
only takes 〈O(N log logN/B logN), O(N log logN/ logN)〉, a lower-order term.

Theorem 3. The linear sieve of Eratosthenes implemented using buffer
trees, assuming M > B2,

√
M/B > logM/B(N/B), and

√
M/B >

log2
M/B(N/B)/ log logN , uses O(N) space and has a complexity of

〈SORT (N/ log logN) , O((N logM/B N/B)/ log logN)〉.

8

4 Sieve of Atkin
The sieve of Atkin [6, 13] is one of the most efficient known sieves in terms of RAM
computations. It can compute all the primes up to N in O(N/ log logN) time using
O(
√
N) memory. We first describe the original algorithm from [6] and then use various

priority queues, including the key-sensitive priority queue from Section 2, to improve its
I/O efficiency.

The algorithm works by exploiting the following characterization of primes using
binary quadratic forms. Note that every number that is not trivially composite must
satisfy one of the three congruences. For an excellent introduction to the underlying
number theoretic concepts, see [11].

Theorem 4 ([6]). Let k be a square-free integer with k ≡ 1 (mod 4) (resp. k ≡ 1
(mod 6), k ≡ 11 (mod 12)) . Then k is prime if and only if the number of solutions to
x2 + 4y2 = k (resp. 3x2 + y2 = k, 3x2 − y2 = k) is odd.

For each quadratic form f(x, y), the number of solutions can be computed by brute
force, iterating over the set L = {(x, y) | 0 < f(x, y) ≤ N}. This requires O(N)
memory; however, by “tracing” the level curves of f , this can be reduced to O(

√
N)

(see Appendix B). Then, the number of solutions that occur an even number of times
are removed. Then by precomputing the primes less than

√
N , the numbers that are not

square-free can be sieved out leaving only the primes as a result of Theorem 4.
The algorithm as described above requires O(N) operations, as it must iterate

through the entire domain L. This can be made more efficient by first performing
a wheel sieve. If we choose W = 12 ·

∏
p2≤log N p, then by an analog of Merten’s

theorem, the proportion of (x, y) pairs with 0 ≤ x, y < W such that f(x, y) is a unit
mod W is 1/ log logN . By only considering the W -translations of these pairs we obtain
L′ ⊆ L, with |L′| = O(N/ log logN) and f(x, y) composite on L \ L′. The algorithm
can then proceed as above.

Using priority queues. The above algorithm and its variants require that M = O(
√
N).

By utilizing a priority queue to store the multiplicities of the values of f over L, as well
as one to implement the square-free sieve, we can trade this memory requirement for I/O
operations. In what follows we use an analog of the wheel sieve optimization described
above, however we note that the algorithm and analysis can be easily adapted to omit
this. See appendix B.3 for a more detailed algorithm description.

Having performed the wheel sieve as described above, we insert the values of each
quadratic form f over each domain L into an I/O- and RAM-efficient priority queue
Q [5]. This requires |L| such operations (and their subsequent extractions), and so this
takes 〈SORT (|L|) , O(|L| logM/B |L| + |L| log logM/ log logN)〉. Because we have
used a wheel sieve, |L| = O(N/ log logN), and so this reduces to〈

SORT

(
N

log logN

)
, O

(
N logM/B N

log logN
+
N log logM

log logN

)〉
. (1)

The remaining entries in Q are now either primes or squareful numbers. In order to
remove the squareful numbers, we sieve the numbers in Q and for every prime we find,
we maintain a record of the multiples of its square. We will track these as pairs 〈p, v〉 in

9

another I/O+RAM efficient priority queue Q′. With each value v we pull from Q, we
repeatedly extract the min value 〈p, w〉 from Q′ and insert 〈p, w + p2〉 until either v is
found in which case it is not square-free and thus not a prime, or exceeded, in which
case it is prime.

For each prime p less than
√
N that was not sieved by the wheel, this part of the

algorithm will perform 〈O(N(logM/B N)/Bp2), O(N(logM/B N + log logM)/p2)〉
operations. Integrating over p, the total number of operations in this phase of the algo-
rithm is less than 〈O (SORT (N) /(B logN)) , O ((SORT (N) + log logM)/ logN)〉 .

Theorem 5. The sieve of Atkin implemented with a wheel sieve, as well as I/O and RAM
efficient priority queues runs in 〈SORT (N/ log logN) , O((N logM/B N)/ log logN +
N log logM/ log logN)〉, using O(N) space.

See Appendix B.1 for a description of how to reduce the space usage to O(
√
N).

5 Sieve of Sorenson
The sieve of Sorenson [28] uses a hybrid approach. It first uses a wheel sieve to re-
move multiples of small primes. Then, it eliminates nonprimes using a test based on
pseudosquares. Finally it removes composite prime powers with another sieve.

The pseudosquare Lp is the smallest non-square integer with Lp ≡ 1 (mod 8) that
is a quadratic residue modulo every odd prime q ≤ p. The sieve of Sorenson is based
around the following lemma—its steps satisfy each requirement of the lemma explicitly.
Following the theorem, we set p so that Lp is the smallest pseudosquare satisfying
Lp > N/(π(p) log2N), and s = bN/Lpc+ 1.

Theorem 6. [28] Let x and s be positive integers. If the following hold: (i) All prime
divisors of x exceed s, (ii) x/s < Lp, the pth pseudosquare for some prime p, and
(iii) p

(x−1)/2
i ≡ ±1 (mod x) for all primes pi ≤ p, and (iv) 2(x−1)/2 ≡ −1 (mod x)

when x ≡ 5 (mod x) and p(x−1)/2
i ≡ −1 (mod x) for some prime pi ≤ p when x ≡ 1

(mod 8), then x is a prime or a prime power.

To begin, the algorithm must calculate Lp. We refer to the original paper for a
method that performs this calculation in o(N), but which further points out that the
first 73 pseudosquares (available online at https://oeis.org/A002189/b002189.txt) are
sufficient for any N < 2.9× 1024. Next, the algorithm calculates the first s primes.

The algorithm divides allN integers into segments of size∆ = π(p) logN . For each
such segment, it goes through the following three phases. We assume that M >> π(p).

In the first phase, the algorithm performs a (linear) wheel sieve to eliminate multiples
of the first s primes. All remaining numbers satisfy the first requirement of Theorem 6.

In the second phase, the algorithm considers each remaining integer k in turn. It
first performs a base-2 pseudoprime test, determining if 2(k−1)/2 ≡ −1 (mod k). If k
does satisfy this, then for each pi ≤ p, it determines if p(k−1)/2

i ≡ ±1 (mod k), with
p

(k−1)/2
i ≡ −1 (mod k) for some pi ≤ p, as well as if k ≡ 1 (mod 8). Note that this

is testing the remaining requirements of Theorem 6.
To analyze the RAM complexity, first note that only O(N/ logN) numbers up

to N pass the base-2 pseudoprime test (mentioned in [22, 28], among other places).

10

Furthermore, in a single segment, only O(∆/ log s) elements remain after the wheel
sieve. Performing the base 2 pseudoprime test takes O(logN) time, for a total time of
O(N logN/ log s) = o(N logN). Performing the remaining tests, if required, takes
π(p) exponentiations, costing O(logN) operations each, leading to a total cost of
O(Nπ(p)) over all segments.

In the third phase, the algorithm must remove all prime powers. If N ≤ 6.4× 1037,
only primes remain and this phase is unnecessary [28, 30]. Otherwise the algorithm
explicitly removes all perfect powers as follows. First, the algorithm constructs by
brute force a list of all the perfect powers less than N by repeatedly exponentiating
every element of the set {2, . . . , b

√
Nc} until it passes N . This list has O(

√
N logN)

elements, so these can be sorted and removed from the list of prime candidates in
〈O(N/B), O(N)〉. Therefore the complexity of the algorithm is dominated by the
second phase, leading to the following theorem.

Theorem 7. The sieve of Sorenson runs in 〈O
(
N
B

)
, O(Nπ(p))〉.

We can phrase the complexity in terms of N alone by bounding p. The best
known bound for p leads to a running time of O(N1.132). On the other hand, the
Extended Riemann Hypothesis implies p < 2 log2N , and Sorenson conjectures
that p ∼ 1

log 2 logN log logN [28]; under these conjectures the RAM complexity is
O(N log2N/ log logN) and O(N logN) respectively.
Sieving an interval. Similar analysis shows that we can efficiently sieve an interval with
Sorenson as well. See Appendix C.2 for details.

Acknowledgments
We thank Oleksii Starov for suggesting this problem to us.

References
[1] A. Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, 1988.
[2] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathematics, pages

781–793, 2004.
[3] L. Arge. The buffer tree: A technique for designing batched external data structures.

Algorithmica, 37(1):1–24, 2003.
[4] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I. Munro. Cache-

oblivious priority queue and graph algorithm applications. In Proc./ of the 34th Annual
Symposium on Theory of Computing, pages 268–276, 2002.

[5] L. Arge and M. Thorup. Ram-efficient external memory sorting. In Algorithms and
Computation, volume 8283, pages 491–501. 2013.

[6] A. Atkin and D. Bernstein. Prime sieves using binary quadratic forms. Mathematics of
Computation, 73(246):1023–1030, 2004.

[7] J. Barkley Rosser and L. Schoenfeld. Approximate formulas for some functions of prime
numbers. Illinois J. Math, 6:64–94, 1962.

[8] C. Bays and R. H. Hudson. The segmented sieve of Eratosthenes and primes in arithmetic
progressions to 1012. BIT Numerical Mathematics, 17(2):121–127, 1977.

[9] S. Bengelloun. An incremental primal sieve. Acta informatica, 23(2):119–125, 1986.
[10] R. P. Brent. The first occurrence of large gaps between successive primes. Mathematics of

Computation, 27(124):959–963, 1973.

11

[11] D. A. Cox. Primes of the form x2 + ny2: Fermat, Class Field Theory, and Complex
Multiplication. Wiley, 1989.

[12] B. Dunten, J. Jones, and J. Sorenson. A space-efficient fast prime number sieve. IPL,
59(2):79–84, 1996.

[13] M. Farach-Colton and M. Tsai. On the complexity of computing prime tables. In Algorithms
and Computation - 26th International Symposium, ISAAC’15, 2015.

[14] R. Gale and V. Pratt. CGOL–an algebraic notation for MACLISP users, 1977.
[15] D. Gries and J. Misra. A linear sieve algorithm for finding prime numbers. Communications

of the ACM, 21(12):999–1003, 1978.
[16] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford University

Press, 1979.
[17] S. Horsley. KOΣKINON EPATOΣΘENOYΣ. or, The Sieve of Eratosthenes. Being an

Account of His Method of Finding All the Prime Numbers, by the Rev. Samuel Horsley,
FRS. Philosophical Transactions, pages 327–347, 1772.

[18] H. W. Lenstra Jr and C. Pomerance. Primality testing with gaussian periods. Lecture Notes
in Computer Science, pages 1–1, 2002.

[19] H. G. Mairson. Some new upper bounds on the generation of prime numbers. Communica-
tions of the ACM, 20(9):664–669, 1977.

[20] F. News. World’s largest prime number discovered – all 17 million digits. https:
//web.archive.org/web/20130205223234/http://www.foxnews.com/
science/2013/02/05/worlds-largest-prime-number-discovered/,
February 2013.

[21] M. Patrascu and M. Thorup. Dynamic integer sets with optimal rank, select, and predecessor
search. In FOCS, pages 166–175, 2014.

[22] C. Pomerance, J. L. Selfridge, and S. S. Wagstaff. The pseudoprimes to 25·109. Mathematics
of Computation, 35(151):1003–1026, 1980.

[23] P. Pritchard. A sublinear additive sieve for finding prime number. Communications of the
ACM, 24(1):18–23, 1981.

[24] P. Pritchard. Linear prime-number sieves: A family tree. Science of computer programming,
9(1):17–35, 1987.

[25] P. Pritchard. Linear prime-number sieves: A family tree. Science of computer programming,
9(1):17–35, 1987.

[26] R. C. Singleton. Algorithm 357: An efficient prime number generator. In Communications
of the ACM, pages 563–564, 1969.

[27] J. Sorenson. An introduction to prime number sieves. Technical Report 909, University of
Wisconsin-Madison, Computer Sciences Department, 1990.

[28] J. P. Sorenson. The pseudosquares prime sieve. In Algorithmic number theory, pages
193–207. 2006.

[29] J. S. Vitter. External memory algorithms and data structures: Dealing with massive data.
ACM Computing surveys (CsUR), 33(2):209–271, 2001.

[30] H. C. Williams. Edouard lucas and primality testing. Canadian Mathematics Society Series
of Monographs and Advanced Texts, (22), 1998.

12

A Linear Eratosthenes’s sieve with buffer trees
In this section, we provide further details for the algorithm given in Section 3 and prove
its correctness.

We first recall the version of the linear sieve of Gries and Misra [15].
Note that we begin by pre-sieving the interval by the

√
logN smallest primes.

This operation speeds up the execution without violating its correctness, as the resulting
candidate primes are exactly those encountered by the algorithm after the loop where p =
p1+
√

log N . This has a cost of 〈O (N/B logN) , O (N/ logN)〉, using the algorithm
in Appendix C and leaves N̄ = N/ log logN potential primes. We will use N̄ in the
following to refer to the number of elements inserted.

Data: S = {2, 3, · · · , N}
Result: S = {p | p ∈ P, p ≤ N}
// p and q are global variables, accessible in any

function
// C represents the set of numbers known as

composites. The operations Insert and
InverseSuccessor are implicitly on C

1 C ← integers less than N multiple of any of the first
√

logN primes;
2 T ← bitarray where T [i] = 1 iff i ∈ C;
3 p← p1+

√
log N ;

4 while p ≤
√
N do

5 q ← p;
6 while q ≤ N/p do
7 for r = 1, 2, . . . , logpN/q do
8 Insert(prq);
9 q ← InverseSuccessor(q);

10 p← InverseSuccessor(p);
11 return GetSet(); // this is [2;N] \ C

Algorithm 2: Linear Sieve with Buffer Tree
We now present how we implement these subroutines to achieve an efficient algo-

rithm in both I/O and RAM complexity, then prove its correctness and complexity.

A.1 Implementation
We expose in this part how the subroutines Insert and InverseSuccessor are
actually implemented in our algorithm. First, we give a global description of the data
structure used. Then, after setting some preliminary definitions and notations, we present
the actual implementation of the subroutines.

Description of the data structure. We use a modified buffer tree which can ef-
ficiently handle the two necessary operations to maintain the set C, Insert and
InverseSuccessor. The original structure has been introduced by Arge [3], but our
implementation is significantly different to achieve a lower RAM complexity.

The buffer tree is a complete tree with branching factor
√
M/B and N/M leaves.

Its depth is then d = 2
⌈
logM/B

N
M

⌉
. We will assume for simplicity that the tree is

complete even at the leaf level.

13

Each node has an associated buffer of size M . This buffer consists of
√
M/B pages

of size
√
MB, one for each child, which are internally unsorted. These pages contain

the elements in that buffer that are intended for the corresponding child; see Figure 2.
Each leaf corresponds to M consecutive elements between 1 and N . Similar to the

internal nodes, the buffer of a leaf is separated in
√
M/B pages, each associated with

exactly
√
MB elements.

In addition to the buffer tree, the data structure used contains a boolean array T ,
indexed from 1 to N , where, at the end of the algorithm, T [i] = 1 if and only if i is
composite. Intervals of T corresponding to a leaf page are considered linked to this
page: when the entire page is brought into memory, this interval is too. This array is
saved as a bit-array, which means that one machine word contains at least logN bits,
and operations on a machine word can be done in constant time.

Each page P of an internal (non-leaf) node is partitioned into
√
M/B + 1 unsorted

lists. The first one, called P ∗, is the list where the new elements are appended. Each other
list corresponds to a page Q of the child linked to P , and is denoted by PQ. Elements
moved to a page Q of the next level are either moved directly from P ∗, or first moved to
the list PQ then later to Q. See Figure 3 for an illustration; an element can follow blue
or red arrows to go to the next level. For consistency, the unique list of a leaf page L will
be denoted L∗.

At each level, the numbers present in a node are smaller than the numbers present
in the next node. Therefore, inside each node, the numbers present in a page are also
smaller than the numbers present in the next page. Each page of the level k, counting the
root as the level 0, can then contain

√
MB numbers among a fixed interval of length

N/ (MB)
(k+1)/2. Therefore, for example, the ith leave, which is at level d (starting the

count at 0), consists in M slots to store a subset of [iM + 1 ; (i+ 1)M].
Note that no element is ever moved to an upper level nor removed from the tree,

except to be inserted in T . Elements can only be moved deeper or to T . In addition, no
duplicates are possible.

See Figure 2 for an illustration of the data structure.

Preliminaries We expose here some notations and definitions used throughout the
explanation of the algorithm and the proof.

The nodes are indexed by the letter N , the pages by the letter P , and the leaf pages
by the letter L.

The least common ancestor page of two leaf pages L and L′ will be noted
LCAP(L, L′) and its level LCA(L, L′).

Above means closer to the root level and deeper means closer to the leaf level.
LCA-ABOVE(L) is the property: For all leaves L′, no element of L′ is above

LCA(L, L′). In addition, no element of L is in L∗: they are all in T .
LCA-ABOVE(L, k) is the property: For all leaf L′, no element of L′ is above

min(LCA(L, L′), k). Note that LCA-ABOVE(L, d) allows elements of L to be in
L∗, and, by convention, LCA-ABOVE(d+ 1) is equivalent to LCA-ABOVE(L).

Note that if k′ ≥ k, LCA-ABOVE(L, k′) implies LCA-ABOVE(L, k).
Access functions: Due to the static structure of the tree, the following operations can be
implemented with a complexity of 〈0, O(1)〉. When a page P is passed in argument or

14

√
MB

√
MB

√
MB. . .

M

√
MB

√
MB

√
MB. . .

M
√

MB
√

MB
√

MB. . .
M

√
MB

√
MB

√
MB. . .

M
√

MB
√

MB
√

MB. . .
M

√
M

B

N

M

Θ
(lo

g
M

/
B
(N
/M

)) le
ve

ls

T 1 2 M N − M N.

Fig. 2. Illustration of the buffer tree and T .

. . .

M

.

M

P ∗

P1 P2 PK

P ∗1 P ∗2 P ∗K

Fig. 3. Illustration of a page of the buffer tree: the list P ∗ can be flushed to any page of the corre-
sponding child node in Flush. The other lists can only be flushed to one page in PartialFlush
or in Flush. An insertion is always executed on the list P ∗ of each page. We have K =

√
M/B.

15

returned by a function, only an identifier is implied, and not all the numbers contained,
hence the null I/O cost.

– GetPage(x, k): returns the page associated to the number x at level k ≤ d
– GetPage(L, k): returns the page associated to numbers of leaf page L at level
k ≤ d

For the sake of simplicity, for any number x, we will note Lx = GetPage(x, d).
For instance, the leaf pages Lp = GetPage(p, d) and Lq = GetPage(q, d) can be
computed in any function.

We define the set Pp,q by the set of pages associated to p or q plus the pages of
the root. This set will be assumed to be in memory in the design of the algorithms.
This assumption in proved later, together with the complexity proof. Note that Pp,q is
modified during the execution of the algorithm. More formally, the definition of Pp,q is:

Pp,q = {P | ∃k ≤ d, P = GetPage(p, k) or P = GetPage(q, k)}
∪
{
P | P is of level 0

}
Note that saying that Pp,q is in memory includes the relevant slots of T .

Subroutines We expose here a detailed explanation on how both subroutines are
implemented, along with the associated pseudo-code.
Management of T : The implementations of basic operations performed on T are
detailed in Algorithm 6. An insertion in T simply modifies the corresponding bit. The
function NextInT (x) computes the next candidate to be prime. All integers skipped
are confirmed composites. This function uses the bit-array structure of T to gain a logN
speedup, as we will show later.
Insertions: The algorithm Insert is presented in Algorithm 2.

Basically, an element x is inserted at a given level k by computing the appropriate
page P and appending it to the list P ∗. If this page is full, i.e., it already contains

√
MB

elements, these elements are moved to the next level via Procedure Flush. In addition,
if x is associated to a page of Pp,q in the next level, it is inserted to the deepest page of
Pp,q possible.

These moves are done directly from the list P ∗, and the appropriate page of the next
level is computed for each element. This process follows the blue arrows on Figure 3.

A call to Insert in Algorithm 2 triggers a call to insert the element at level 0. It can
be inserted deeper according to Pp,q as illustrated in Figure 4, and trigger some flushes.

At the end of the algorithm, the call to GetSet flushes all the tree into the array T ,
then returns T .
Inverse Successor: The algorithm InverseSuccessor is presented in Algorithm
13.

The objective of InverseSuccessor is to compute the next element that is not
in C, which means that is not in the tree or in T . A naive algorithm would be to check
in each page if the element is present or not, but this achieves a very high complexity.
The strategy of InverseSuccessor is to ensure that the next elements cannot be in

16

√
MB

√
MB

√
MB. . .

M

√
MB

√
MB

√
MB. . .

M
√

MB
√

MB
√

MB. . .
M

√
MB

√
MB

√
MB. . .

M
√

MB
√

MB
√

MB. . .
M

√
MB

√
MB

√
MB. . .p

M
√

MB
√

MB
√

MB. . .x

M
√

MB
√

MB
√

MB. . .q

M

Fig. 4. Illustration of the insertion of x. The leaves in which p, q and x belong are drawn. The
green rectangle is the page where x will be inserted. The colored pages are pages of Pp,q . T is not
represented.

Procedure InsertInT (x)
Input: A multiple x with T [x] = 0
Result: Add x in T
T [x]← 1 ; // This only modifies one bit

Procedure NextInT (x)
Input: An integer x with T [x] = 0
Result: An integer z > x such that ∀t ∈ (x, z), T [t] = 1
// We even have T [t] = 0 in this version but it is not

required
1 w′ ← machine word containing T [x];
2 w ← w′ with all bits not after T [x] set to 1;
3 while w has no bit equal to 0 do
4 w ← machine word representing the elements of T after w;
5 z ← index of T corresponding to the first bit of w equal to 0;
6 return z;

Algorithm 3: Operations on T

17

Algorithm Insert(x)
Input: A number x 6∈ C
Invariant: LCA-ABOVE(Lp) and LCA-ABOVE(Lq)
Result: Insertion of x in the buffer tree or in T , so in C
Insertion(x, 0);

Procedure Insertion(x, k)
Input: A number x and a level k ≤ d
Data: x is not in the buffer tree nor in T
Result: Insertion of x at level max (LCA(Lx, Lp), LCA(Lx, Lq), k), deeper, or

in T
1 if Lx equals Lp or Lq then
2 InsertInT (x) ;
3 return;
4 P ← GetPage(x, k);

// if the page of the next level is in Pp,q, insert deeper
5 Pp ← GetPage(p, k + 1); Pq ← GetPage(q, k + 1);
6 if k < d and GetPage(x, k + 1) is equal to Pp or to Pq then
7 Insertion(x, k + 1) ; // k < d
8 else
9 if k < d and |P | =

√
MB then

10 Flush(P, k);
11 append x to P ∗ ;

Procedure Flush(P, k)
Input: A full page P of level k < d
Result: P is empty
// Note that all the elements will be inserted in the

same node
1 foreach x ∈ P do
2 remove x from P ;
3 Insertion(x, k + 1);

Procedure GetSet()
Result: A bit array caracterising the set [2;N] \ C by the value 0

1 Call Flush on every page for any pre-ordering (children after parents);
2 return T ;

Algorithm 4: Insertion algorithm and sub-functions

18

a node: they are in T . This is done by a call to the procedure PartialFlush. Then, it
is efficient to compute the next element that is not in C by scanning T .

It is still inefficient if PartialFlush has to scan each level of the tree to move
the appropriate elements to T , so this function uses the fact that the inserts are done at
the deepest page possible in Pp,q. This way, as InverseSuccessor is only called
on the previous value of p or q, PartialFlush does not need to scan a page high
in Pp,q: no relevant element has been inserted here. For instance, on Figure 4, when
PartialFlush will be called on Lx, it will not check the root node.

This process avoids a high I/O complexity, but still needs a high RAM complexity:
for each page scanned, all the elements are checked to see if they can be inserted deeper

in Pp,q . This means that an element at a page can be scanned
√

M
B times, once per child

page, where we want a constant cost. Thus, PartialFlush actually scans only the
list P ∗ of each page, and move the elements to the appropriate list PQ. Then, it moves
all elements from the relevant list PQ to the next level. This process follows the red
arrows in Figure 3.

A.2 Analysis
We first begin by proving the correctness of the implementation, then its complexity. The
optimization of the RAM complexity will be discussed after.

Correctness of the algorithm. We need to prove that the algorithms Insert and
InverseSuccessor are correct. Correct means that if the input, the data, and the
invariant requirements are verified when a function is called, then the output and invariant
requirements are verified when the function terminates, and the function does not violate
Lemma 2. In addition, no insertion of a new element in the tree not mentioned in the
result requirement is performed.

Lemma 2. An element is never moved to an upper level. No duplicates are possible. If
an element is removed from the tree, it is added to T .

Proof. This lemma will be proved by Theorem 8, which states that the algorithms are
correct.

Lemma 3. For any k, x, P , the procedures Insertion(x, k) and Flush(P, k) are
correct.

Proof. We prove this result by induction on d− k.
If k = d, the call to Insertion(x, k) adds x either to the array T or to the

appropriate page leaf so is correct. Flush cannot be called on such input, so the
property is verified.

Suppose the property true for k − 1, and we now prove it for k.
Consider the procedure Flush. For each element of the page P , it is removed from

P , then, by induction, inserted to a deeper level or in T . So Flush is correct as it does
not violate Lemma 2 and empty P .

Consider the procedure Insertion.
If the test Line 2 occurs, x is inserted in T so the call is correct.

19

Algorithm InverseSuccessor(x)
Input: A number x 6∈ C
Data: LCA-ABOVE(Lx)
Output: The smallest number y greater than x and not present in C
Result: LCA-ABOVE(Ly)

1 y ← x;
// scan T to find y

2 repeat
3 tmp ← y;
4 y ← NextInT (y);
5 if Ly 6= Ltmp then

// flush the next elements from the buffer tree to
T

6 PartialFlush(d, Ly , Ltmp);
7 until T [y] = 0;
8 return y;

Procedure PartialFlush(k, L, Ltmp)
Input: A level k ≤ d and two leaves L and Ltmp

Data: LCA-ABOVE(Ltmp)
Result: LCA-ABOVE(L, k + 1)

1 P ← GetPage(L, k);
// Flush partially the ancestor pages starting from

LCAP(L, Ltmp)
2 if k > 0 and GetPage(Ltmp , k) 6= P then
3 PartialFlush(k − 1, L, Ltmp)
4 if k = d then // in this case, we have P = L

// move the leaf page to T
5 foreach z ∈ L∗ do
6 remove z from L∗;
7 InsertInT (z);
8 else

// move each unlabeled element to its corresponding
list

9 foreach z ∈ P ∗ do
10 move z to PGetPage(z, k + 1) ;

// Move deeper the elements that are in the same page
as L

11 foreach z ∈ PGetPage(L, k + 1) do
12 Remove z from P ;
13 Insertion(z, k + 1);

Algorithm 5: Insertion algorithm and sub-functions

20

Now suppose that max (LCA(Lx, Lp), LCA(Lx, Lq)) > k. Then, the
recursive call Line 7 occurs. By induction, x is inserted at a level larger than
max (LCA(Lx, Lp), LCA(Lx, Lq) , k), so the current call is correct.

Otherwise, Flush is called line 10, then x is inserted at level k. So the function is
correct as it does not violate Lemma 2 and respects the result requirements.

Lemma 4. For any k, L, Lx, the procedure PartialFlush(k, L, Ltmp) is correct.

Proof. We prove this result by induction on k.
If k = 0, for any L′, if LCA(L, L′) > 0 then elements of L′ in the root are moved

deeper or to T in Line 13, as the Insertion procedure is correct by Lemma 3, so the
call of PartialFlush is correct.

Suppose the property true for k − 1, and we now prove it for k < d.
First, suppose that LCA(L, Ltmp) < k. Then, the recursive call Line 3 occurs, and

by induction, we have LCA-ABOVE(L, k). For any L′ such that LCA(L, L′) > k, if
elements of L′ are in P , they are moved deeper or to T at Line 13, as the Insertion
procedure is correct. If they were in P ∗, they are moved to the appropriate page on Line
10. So we have LCA-ABOVE(L, k + 1).

Therefore, as the procedure respects Lemma 2, it is correct.
Then, suppose that LCA(L, Ltmp) ≥ k. We have LCA-ABOVE(Ltmp), let’s prove

that we then have LCA-ABOVE(L, LCA(L, Ltmp)). We will illustrate the cases by
Figure 5. Let L′ be a leaf page.

If LCA(L, Ltmp) ≥ LCA(L, L′), then LCA(L, L′) ≤ LCA(Ltmp , L
′). As

we have LCA-ABOVE(Ltmp), no element of L′ is above LCA(Ltmp , L
′) so no element

of L′ is above LCA(L, L′). This corresponds to the case where L′ is at the position
of Node B, C or D in Figure 5. Note that only the position B implies LCA(L, L′) <
LCA(Ltmp , L

′).
Otherwise, we have LCA(L, Ltmp) < LCA(L, L′). Then, we have

LCA(Ltmp , L
′) = LCA(L, Ltmp) and by definition of LCA-ABOVE(Ltmp), no

element of L′ is above LCA(Ltmp , L
′) so LCA(L, Ltmp). This corresponds to the

page A of Figure 5.
In both cases, the property LCA-ABOVE(L, LCA(L, Ltmp)) is then respected.
Therefore, we have LCA-ABOVE(L, LCA(L, Ltmp)) so we have the weaker

property LCA-ABOVE(L, k). Then, as previously, the moves of Line 13 ensure
LCA-ABOVE(L, k + 1) and the correctness of the procedure.

Then, if both cases, the procedure is correct.
Now, we prove the result for k = d. By induction, we have LCA-ABOVE(L, k) after

Line 3, if L = Ltmp or not. In Line 6, all the elements of Ly are moved to T , so we get
LCA-ABOVE(L, k + 1).

Therefore, the procedure is correct for any k.

Theorem 8. The algorithms Insert and InverseSuccessor are correct.

Proof. First, we study the Insert algorithm.
As the procedure Insertion is correct and x 6∈ C, the call to Insertion

has a valid input and x is inserted in the tree at a level not smaller than
max (LCA(Lx, Lp), LCA(Lx, Lq)). If Lx equals Lp or Lq , x is inserted directly in

21

LCA({L,Ltmp}, C)

LCA(L, Ltmp)
LCA(Ltmp , {A,D})
LCA(L, {B,D})

LCA(L, A)

L A D

LCA(Ltmp , B)

B Ltmp C

Fig. 5. Abstract tree representing the position of the Least Common Ancestors between two leaf
pages L, Ltmp and four leaf pages A, B, C, D representing all the possible cases.

T . So the invariant is respected as no element has been moved to a smaller level and x
does not violate it.

Now, we study the InverseSuccessor algorithm. After each call
to PartialFlush Line 5, we have LCA-ABOVE(Ly, k + 1), which is
LCA-ABOVE(Ly). In particular, all elements of Ly are in T . This property is ensured
at the beginning by the requirement LCA-ABOVE(Lx). The algorithms maintain this
property each time y is in a new leaf page, so when the tests Line 7 occur, they are
equivalent to testing y 6∈ C. Therefore, the output of InverseSuccessor is correct.
Furthermore, there exists a list of leaf pages L = {l1 . . . lt} (which is the list of succes-
sive Ltmp) such that l1 = Lx, lt = ly and for each i, a call to PartialFlush(d, li,
li+1) has been triggered. When such a call is triggered, if we had LCA-ABOVE(li), we
get LCA-ABOVE(li+1).

So, as we have LCA-ABOVE(Lx) at the beginning of the InverseSuccessor
call, we have LCA-ABOVE(Ly) at the end. So the procedure InverseSuccessor is
correct.

Complexity of the algorithm. Now, we analyze the total complexity of the algorithm.
We assume Assumption 9 concerning the size of B and M . Apart from the tall cache

assumption, this assumes that the order of B is larger than a logarithmic function of N .
We recall that N̄ represents the number of elements inserted. N̄ is equal to N in the
original algorithm and to N/ log logN with the pre-sieving step.

Assumption 9 We suppose that
√
M/B > logM/B(N/M) and

√
M/B >

log2 logN/ logM/B
N
B .

We analyze the cost of the inserts and the inverse successor queries separately. Note
that the height of the tree is d = dlog√

M/B
N/Me = O(logM/B N/M).

22

Lemma 5. It is possible to always maintain simultaneously in memory all the pages of
Pp,q .

Proof. These pages represent one node of size M and Θ
(

logM/B
N
M

)
pages of size

√
MB. By Assumption 9, this sums to a number of elements m equal to:

m = O

(
M +

√
MB logM/B

N

M

)
m = O

(
M +

√
MB

√
M

B

)
m = O (M)

Then, we assume, to compute the I/O complexity, that the set Pp,q is in memory
at the beginning of the functions, and when p or q is changed, the new set Pp,q must
be brought in memory at the end of the function. In other words, during the execution
of InverseSuccessor, Pp,q is always in memory, and at the end, Pp,q plus all the
pages related to y are in memory.

Lemma 6. The complexity of performing all Insert and Insertion calls is
〈O
(

N̄
B logM/B

N
B

)
, O

(
N̄ logM/B

N
B

)
〉, assuming that when PartialFlush calls

Insertion on Line 13, the corresponding page is already in memory.

Proof. The cost of performing one flush, ignoring the cost of the recursive flushes, is
〈O
(√

M/B
)
, O

(√
MB

)
〉. We must move

√
MB elements to the next level; each

requires O(1) computation to find the page it occurs in. The cost to write out
√
MB

elements consecutively requires O(
√
M/B) I/Os. Then we get the above time, plus we

may need to do an extra I/O per list when the block is initially brought in. Since there
are O(

√
M/B) lists, this gives a total of O(

√
M/B) I/Os per flush. We move

√
MB

elements during this flush, so the per-element flush cost is O(1/B).

Each element can be involved in at most d = Θ
(

logM/B
N
B

)
flushes and insertions,

the depth of the tree. Therefore, the amortized cost of the total number of flushes per
element is 〈O

(
1
B logM/B

N
B

)
, O

(
logM/B

N
B

)
〉.

When a call to Insertion occurs, only the actions listed below can have a non-null
I/O cost and a non-constant RAM cost.

On Line 7, this extra insertion has a null I/O cost, because the deeper page is already
in memory by Lemma 5.

On Line 10, the cost of this flush is already counted above.
On Line 11, we need to separate the cases. If the call of Insertion comes from

Insert, then by Lemma 5, the root is already in memory so the I/O cost is null. If
the call comes from Flush, then the cost is already counted above. If the call comes
from PartialFlush, by hypothesis of the Lemma, the page P is already in memory
so the I/O cost is null. If the call comes from the recursive call Line 7, the I/O cost is

23

null because by Lemma 5, this page is already in memory. In all cases, the RAM cost is
constant.

On Line 2, by Lemma 5, the corresponding slot of T is already in memory.
Therefore, as there are less than N elements inserted, the complexity of performing

the total number of insertions is 〈O
(

N̄
B logM/B

N
B

)
, O

(
N̄ logM/B

N
B

)
〉.

We now need to prove Lemma 7, which analyzes the complexity of a toy
algorithm, Algorithm 6, before proving Lemma 8 on the I/O complexity of the
InverseSuccessor calls.
Lemma 7. The I/O complexity, amortized against the calls to Insertion, of
Algorithm 6 is O

(
b√
MB

+ b
B log N

)
and the total number of recursive calls to

PartialFlush is O
(

b√
MB

)
.

Proof. Let’s compute the cost of Algorithm 6, assuming it is launched in Algorithm 2,
so that all the pages related to a are in memory.

Algorithm InverseSuccessorLoop(a, b)
Input: Two numbers such that a < b, and a = p in Algorithm 2

1 x← a;
2 while x < b do
3 x← InverseSuccessor(x);

Algorithm 6: Theoretical study algorithm
First, we have to show that when PartialFlush(d, Ly, Ltmp) occurs, the I/O

complexity, without the calls to Insertion, is O
(√

M
B (d− LCA(Ly, Ltmp))

)
.

Indeed, during one call, only the page P has to be brought into memory, plus what
the recursive call requires. The recursive call cannot be called on a level higher than
LCA(Ly, Ltmp), so there are at most d− LCA(Ly, Ltmp) recursive calls. Note that
for the last call, the page is also associated to Ly, so is already in memory. The cost to
bring the page P into memory is Θ(1 + k/B) = O(

√
MB) where k is the number of

elements contained in P at the time when the page is brought.
We now compute the I/O complexity of Algorithm 6. The subarray of T between a

and b has to be brought into memory for the tests on T Line 7 in InverseSuccessor,
which has a cost of O

(
b−a

B log N

)
. Indeed, each machine word contains logN bits.

Then, we define the list L as in the proof of Theorem 8. L is the list of leaves
L = {l1 . . . lt} (which is the list of successive Ltmp) such that l1 = La, lt = Lb and
for each i, a call to PartialFlush(d, li, li+1) has been triggered inside a call to
InverseSuccessor. The number of pages contained in L is exactly∑

i

(d− LCA(li, li+1))

This term is bounded by the number of pages of the tree surrounding La and Lb. See
Figure 6 for an illustration.

We split this set of pages into a set of O
(
b−a
M

)
internal pages and O

(
b−a√
MB

)
leaf

pages. We count a cost of O
(√

M
B

)
I/Os to bring into memory an internal page and

24

4

2

1

x 1

2 3

2 3

4

4

y

Fig. 6. Illustration of the successive calls to PartialFlush in a call of InverseSuccessor.
The ancestors of x are assumed to be in memory. The calls are done on a leaf, then on its ancestors.
The ith call to PartialFlush scans the nodes labeled by i.

O
(
1 + kP

B

)
I/Os to bring into memory a leaf page, where kp is the number of elements

in this page.
Therefore, the I/O complexity is

O

(
b− a
M

√
M

B
+

b− a√
MB

+
∑
P∈L

kP
B

)
= O

(
b− a√
MB

+
1

B
(# insertions in T)

)
Indeed, each element present in a leaf page will be added to T . As each element can

only be inserted once in T , we can amortize this cost against the insertion cost, so the
additional I/O cost of Algorithm 6 is

O

(
b− a√
MB

+
b− a
B logN

)
Now, we need to compute the total number of recursive calls of PartialFlush.

During a call to InverseSuccessorLoop(a, b), each page of the tree surrounding
La and Lb makes one recursive call. So the number of recursive calls is O

(
b√
MB

)
, by

the same argument as above.

Lemma 8. The complexity of performing all InverseSuccessor calls, in addition
to the total cost of the Insertion calls, is

〈O
(
N log logN

B logN

)
, O

(
N log logN

logN

)
〉

Furthermore, when a call to Insertion is done, the concerned page is already in
memory.

25

Proof. We can group the calls to InverseSuccessor in Algorithm 2 in one
call to InverseSuccessorLoop(1,

√
N) for the ps and for each p, one call to

InverseSuccessorLoop(p, n
p) for the qs associated. Indeed, as by Lemma 5,

the appropriate pages are kept in memory, the I/O complexity is not changed by this
modification.

By Lemma 7, the total I/O complexity of all the calls to InverseSuccessor is
then:

CI/O = O

√N
B

+
∑

p∈P, p<
√
N

(
N

p

(
1√
MB

+
1

B logN

))

= O

(√
N

B
+
N log logN√

MB
+
N

B

log logN

logN

)

= O

(
N log logN

B logN
+
N log logN√

MB

)
Concerning the RAM complexity, in the total calls to PartialFlush, the cost of

moving the elements is bounded by the complexity of the total calls to Insertion.
Indeed, only a constant RAM complexity per element per level is needed: to move it
from a list P ∗ to its list PQ, which can happen only once per element per page. For the
leaves level, again, only a constant cost per element is required. Therefore, we amortize
this cost against the insertion cost, and do not count it here.

We have to add a constant cost per recursive call, to take into account the calls where
no element is moved, which, by Lemma 7, sums to:

C1
RAM = O

(
N√
MB

log logN

)
The only term remaining to compute the total RAM complexity of

InverseSuccessor is the term without counting the calls to PartialFlush.
We know that there are O(N̄ +

√
N) = O(N̄) calls to InverseSuccessor. Indeed,

there is one call per modification of the value of p or q.
After each call to NextInT Line 4, we have T [y] = 0. Therefore, either

a call to PartialFlush is triggered Line 5, or the call terminates. There are
O
(

N√
MB

log logN
)

calls to PartialFlush, so O
(

N√
MB

log logN + N̄
)

calls to
NextInT .

Now, note that the RAM cost of the function NextInT called on x and returning y
is O

(
1 + y−x

log N

)
, as each line executes in constant time and a machine word contains

logN bits. Therefore, the remaining RAM term is equal to :

26

C2
RAM = O

 N√
MB

log logN + N̄ +
∑

p∈P, p<
√
N

(
N

p logN

)
= O

(
N̄ +N log logN

(
1√
MB

+
1

logN

))
= O

(
N̄ +

N log logN

logN
+
N log logN√

MB

)

So the additional RAM complexity, with regards to the cost of the insertions, is:

CRAM = O

(
N log logN

logN
+
N log logN√

MB

)
Now, note that by Assumption 9, we have

√
M/B = Ω(log2 logN/ logM/B

N
B),

so

N log logN√
MB

=
N

B

log logN√
M/B

= O

(
N logM/B

N
B

B log logN

)
Therefore, the total additional cost of the InverseSuccessor calls is:

〈O
(
N log logN

B logN

)
, O

(
N log logN

logN

)
〉

Therefore, by combining the above results, we get

Theorem 10. The linear sieve of Eratosthenes implemented with buffer trees, assuming
that

√
M/B > logM/B N and

√
M/B > log2

M/B(N/B)/ log logN , has a complexity
of

〈O

(
N

B

logM/B
N
B

log logN

)
, O

(
N

logM/B
N
B

log logN

)
〉

and a space requirement of

O

(
N

(√
B

M
+

1

logN

))
Proof. Indeed, the insertions and flushes, including the last call to GetSet that empties
the tree, have a complexity of

〈O
(
N̄

B
logM/B

N

B

)
, O

(
N̄ logM/B

N

B

)
〉

=〈O

(
N

B

logM/B
N
B

log logN

)
, O

(
N

logM/B
N
B

log logN

)
〉

27

and the additional complexity of the pre-sieve step and the InverseSuccessor
calls is

〈O
(
N log logN

B logN

)
, O

(
N log logN

logN

)
〉

Now, as we have M/B = O(N) and logN = Ω(log2 logN), we have

log logN

logN
= O

(
1

log logN

)
= O

(
logM/B

N
B

log logN

)
So the global complexity for the entire algorithm is

〈O

(
N

B

logM/B
N
B

log logN

)
, O

(
N

logM/B
N
B

log logN

)
〉

Concerning the space complexity:
For the pre-sieve, we need a space O(N/ logN). For the whole tree but the leaves,

we need a space of O(N
√
B/M). For the bitarray, we need a space O(N/ logN).

For the leaf pages, we can actually shrink their size by a factor logN , so that they
can contain at most

√
MB/ logN elements. Indeed, as these elements will be flushed

in a portion of T that fits in
√
MB/ logN machine words, the amortized cost of such a

flush per element is O(1/B), which is the desired bound. The space used per each page
is then O(1 +

√
MB/ logN). So the space used to store all the O(N/

√
MB) leaves is

O
(
N/
√
MB +N/ logN

)
. Note that this space optimization has not been depicted in

the pseudo-code for clarity.
Therefore, the space requirement is

O

(
N

(√
B

M
+

1

logN

))

B Sieve of Atkin
We present here the pseudo-code depicting the different versions of the sieve of Atkins [6].
The two first sections only reformulate the original algorithms, and Appendix B.3 depicts
our contribution: an I/O-efficient version of the sublinear sieve of Atkins.

B.1 Level Curve Tracing
We first present the non-optimized version of the sieve of Atkins, which has a linear time
complexity, and does not optimize I/Os.

If M = N1/2+o(1), then the sieve can be performed in memory. Let f(x, y) be a
binary quadratic form and let L = {(x, y) ∈ N2|f(x, y) ≤ N}. Suppose that M can
hold an array of∆ values. Then we can subdivide L = L0∪L1∪· · ·∪Ldn/me−1, where
Li = {(x, y) ∈ L|i∆ < f(x, y) ≤ (i+ 1)∆}, and use our array to count the values of
f over each Li. For conciseness, we only describe the algorithm for the first quadratic
form, but the other cases are similar.

28

generate a list of primes P up to
√
N by any reasonable means;

for i← 0 to dN/∆e − 1 do
A[1]← 0, A[2]← 0, . . . , A[∆]← 0;
x← 1;
while x2 + 4 ≤ (i+ 1)∆ do

y ←
⌈
1/2
√

(i∆)− x2
⌉

, k ← x2 + 4y2;

while k ≤ (i+ 1)∆ do
if k ≡ 1 (mod 4) then

A[k − i∆]← A[k − i∆] + 1;
y ← y + 2, k ← x2 + 4y2;

x← x+ 2;
foreach p ∈ P do

j ←
⌈
i∆/p2

⌉
;

while p2j ≤ (i+ 1)∆ do
A[p2j − i∆]← 0, j ← j + 1;

for j ← 1 to ∆ do
if Odd(A[j + i∆]) then

Print(j + i∆);
Algorithm 7: The “linear” sieve of Atkin for primes congruent to 1 mod 4

Each Li is the region between two level curves, and the algorithm operates on them
individually. For each x the algorithm calculates the smallest viable y within the region
and then keeps incrementing it until it escapes the region. Because of the size of M and
the choice of ∆, each x with f(x, 1) ≤ (i+ 1)∆ has at least one y such that (x, y) ∈ Li.
Thus the overhead is at most linear.

f(x, y) = i∆ f(x, y) = (i+ 1)∆

Fig. 7. This figure depicts the algorithm “tracing” the points between level curves of f . The y
values of the encircled points must be calculated.

29

B.2 Pre-sieving with a wheel
Here we show the algorithm with a wheel sieve on L. For brevity we describe the
strategy for a general binary form f(x, y). This can then be implemented for each of
the binary forms from Theorem 4 in Section 4. This algorithm has a time complexity of
N/ log logN , and is the main contribution of [6].

Let W = 12 ∗
∏√log N

i=1 pi = No(1), and let U ⊆ [W]2 be the set of points (x, y)
such that f(x, y) is a unit mod W . Because f(x+ aW, y + bW) ≡ f(x, y) (mod W)
for any a, b ∈ Z, we can reduce the domain on which we work to the W -translates of
U . This is because the value of f on each of the remaining points must be of the form
kW + c where c shares a factor with W . Thus we loop through U , and for each point
d = (x, y) ∈ U , we count the occurrences of the values of f on each of the W -translates
within L. This is illustrated for a particular d in Appendix B.2. Then those values which
occur an odd number of times will be primes or squareful. Those squareful numbers
must be sieved, which can be done in a manner analogous to the sieve of Eratosthenes.

(0,W)

(W, 0)

W

W

Fig. 8. A visualization of the wheel pre-sieve. Here the red points are the unit-valued points on
[W]2, and the grey points in [W]2 have been eliminated. The black points are W -translates of
d = (x, y), and the grey points outside of [W]2 are W -translates of other points in U .

Because of the choice of W , it follows from Merten’s Theorem that
|U | = O(|W |2/ log logN). Thus the counting phase of the algorithm will take
O(N/ log logN) time. Since we have already sieved the first

√
logN primes, it can be

shown that the squarefree sieve can also be completed in O(N/ log logN).

B.3 Using a priority queue
The pseudo-code functions below describe our variant of the sieve of Atkins. Priority
queues are used instead of arrays to improve the I/O efficiency. This version requires

30

O
(
N1+o(N)

)
space, but it can be segmented among level curves as in Appendix B.1

to use O
(
N1/2+o(N)

)
. Note that in what follows objects are passed to functions as

references. The code for some functions has been omitted.

W ← ComputeWheelModulus(N);
U ← ComputeUnitsMod(W);
create three empty lists of pairs L1, L2 and L3;
L1← ConstructPrincipalDomain(W,U,1,4,1,4);
L2← ConstructPrincipalDomain(W,U,3,1,7,12);
L3← ConstructPrincipalDomain(W,U,3,-1,11,12);
create an empty min priority queue Q that only stores values;
InsertValuesFromDomain(Q,W,L1, 1, 4) ;
InsertValuesFromDomain(Q,W,L2, 3, 1) ;
InsertValuesFromDomain(Q,W,L3, 3,−1) ;
Q.Insert(∞);
create an empty queue S;
S ← EliminateEven(Q);
Print all the primes dividing W ;
EliminateSquaresAndPrint(S);

Algorithm 8: The main process of the Sieve of Atkin in external memory

ConstructPrincipalDomain(W,U, a, b, c, d)
create an empty list L;
foreach (x, y) ∈ [W]2 do

if ax2 + by2 ∈ U +WZ and ax2 + by2 ≡ c (mod d) then
L.Add((x, y));

return L;
Algorithm 9: ConstructPrincipalDomain: Relative to f(x, y) = ax2 + by2, returns a
list of all the unit-valued (mod W) points (x, y) in [W]2 with f(x, y) ≡ c (mod d)

31

InsertValuesFromDomain(Q,W,L, a, b)
foreach (x, y) ∈ L do

i← 1;
while a(x+ iW)2 + by2 ≤ N do

j ← 1;
while a(x+ iW)2 + b(y + jW)2 ≤ N do

Q.Insert((x+ iW)2 + 4(y + jW)2);
j ← j + 1;

i← i+ 1;
return;

Algorithm 10: InsertValuesFromDomain: Relative to f(x, y) = ax2 + by2, inserts
the value of f on every W -translate of every point in L into Q.

EliminateEven(Q)
create an empty queue S;
p′ ← 0, c← 0, k ← 0;
while Q 6= ∅ do

p← Q.Extract-Min();
if p 6= p′ then

if Odd(c) then
k ← k + 1, S.Enqueue(p′);

c← 1;
else

c← c+ 1;
p′ ← p;

return S;
Algorithm 11: EliminateEven: Returns a queue with all the values in Q that occur an
odd number of times.

32

EliminateSquaresAndPrint(S)
create an empty key-sensitive min priority queue Q′ that can store 〈key, value〉 pairs;
c← S.Dequeue();
Q′.Insert(〈c, c2〉);
while S 6= ∅ do
〈p, v〉 ← Q′.Find-Min();
c← S.Dequeue();
while v < c do

Q′.Extract-Min();
Q′.Insert(〈p, v + p2〉);
〈p, v〉 ← Q′.Find-Min();

if v = c then
while v = c do

Q′.Extract-Min();
Q′.Insert(〈p, v + p2〉);
〈p, v〉 ← Q′.Find-Min();

else
Print(c);
Q′.Insert(〈c, c2〉);

return;
Algorithm 12: EliminateSquaresAndPrint: Prints the squarefree numbers in S, which
in this context are the primes (excluding those removed by the wheel, which are printed
in the main procedure).

33

C Sieving the first
√
logN primes

We describe here a method to compute the numbers smaller than N that are co-prime
to the first

√
logN primes. This method is used by the algorithm in Appendix A. First,

we present the pseudo-code of the algorithm, before proving its correctness and its
complexity.

Data: S = {2, 3, · · · , N}
Result: A bit vector expliciting the co-primes to {p1 . . . p√log N} up to N
Compute the first

√
logN primes p1 . . . p√log N ;

Compute P =
∏

1<i<
√

log N pi;
Sieve SP = {1 . . . P} with the first primes in a bit vector sP (value COMPOSITE

or COPRIME);
Compute s′P equal to sP but with bits before p√log N set to COMPOSITE;
Concatenate sP with copies of s′P to form a N -long bit vector s;
return s;

Algorithm 13: Low-primes sieving

Lemma 9. This algorithm is correct: the returned bit vector explicits the co-primes to
to {p1 . . . p√log N} up to N .

Proof. We need to show that for all x < N , s[x] is COMPOSITE if and only if there
exists k ≤

√
logN such that pk divides x.

First, suppose x < P . This property is ensured by the explicit sieving of SP .
If x is greater than P , let i = x mod P . Then, for any k ≤

√
logN , pk divides

x if and only if pk divides i. If i ≤ p√log N , there exists k ≤
√

logN such that pk
divides i, so x. And s[x] = s′P [i] = 0, so the property is true. If i > p√log N , there
exists k ≤

√
logN such that pk divides i if and only if sP [i] = COMPOSITE, and

s[x] = s′P [i] = sP [i].

Theorem 11. The complexity of this algorithm is 〈O (N/(B logN)) , O (N/ logN)〉.

Proof. First, note that P is equivalent to

P = exp
(

(1 + o(1))
√

logN log logN
)

= O(N
log log N√

log N)

Computing the first primes, P , and s′P from sP do not exceed the bound.
Sieving SP successively with

√
logN primes has a time complexity ofO(

√
logNP)

and an I/O complexity of O(
√

logNP/(B logN)), which does not exceed the bound.
Creating s from s′P means achievingN/P copies of s′P , which has a time complexity

of O(N/ logN) and an I/O complexity of O(N/(B logN)).

34

C.1 Sieve of Eratosthenes using a RAM-efficient external-memory
priority queue.

The RAM and I/O performance of sieve of Eratosthenes can be improved using the
recently proposed RAM-efficient external-memory priority queue [5] in a folklore
priority queue based implementation of the sieve.

The straightforward folklore sieve implementation is shown in Figure 1(a). The
priority queue Q stores 〈k, v〉 pairs, where k is a prime (key) and v is its multiple (value).
Initially, 〈2, 4〉 is inserted into Q. When a pair 〈k, v〉 is deleted from Q, we check if v
is two more than the last value v′ deleted, and if so, p = v − 1 is not a multiple of any
prime, and hence must be a prime itself. We then insert 〈p, p2〉 into Q. We always insert
the next multiple v + k of k into Q.

The performance bounds of the sieve above with a RAM-efficient external-memory
priority queue [5] Q is given by the theorem below. The bounds follow from the obser-
vation that the sieve performs Θ

(∑
prime p∈[1,

√
N]

N
p

)
= Θ (N log logN) operations

on Q costing 〈O
(

1
B log M

B
N
)
, O

(
log M

B
N + log logM

)
〉 each.

Theorem 12. The sieve of Eratosthenes (shown in Figure 1(a)) implemented
using a RAM-efficient external-memory priority queue [5] has a complexity
of 〈O (SORT (N log logN)) , O

(
N log logN

(
log M

B
N + log logM

))
〉 and uses

O
(√

N
)

space for sieving primes in [1, N].

C.2 Sieve of Sorenson on a Segment
The sieve of Sorenson can be adapted to sieve for primes on the interval [a, b] provided a
sufficiently large pseudosquare table is available. We further assume that M = Ω(s) =
Ω(π(p) log2 b), where here and below p is determined as above but by b rather than N .
In that case, we can determine the primes up to s in O(s). We then perform the initial
wheel sieve phase in memory on each segment, which takesO((b−a)+s) = O((b−a)+
π(p) log2 b) operations andO((b−a)/B+s/B+1) = O((b−a)/B+π(p) log2 b/B+1)
I/Os.

In the second phase we must exponentiate each number in the segment for (poten-
tially) each pseudoprime up to p. It takes 〈O(b−a

B + 1), O((b− a)π(p))〉.
In the third phase we can for each k = 2, 3, . . . , blog bc compute r = da1/ke. Then

we create the list of perfect powers in [a, b] by taking rk, (r + 1)k, . . . for each k until
we reach b. This list will have O((

√
b −
√
a) log b) elements and can be computed in

O((
√
b−
√
a) log2 b+ log2 b). Thus all the perfect powers can be sorted and removed

from the candidate list in 〈O((b− a)/B), O((b− a) + log2 b)〉. We have shown:

Theorem 13. On a segment from a to b, the sieve of Sorenson runs in 〈O((b − a +
π(p) log2 b)/B + 1), O((b− a)π(p) + π(p) log2 b)〉

35

