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Avoiding or preventing deadlocks in simulation tools for train schedul'

ing remains a critical issue, especially when combined with the objec'

tive of minimization (e.g., the travel times of the trains). The deadlock

avoidance and detection problem is revisited, and a new deadlock avoid-

ance algorithm, called DEADÄALG, is proposed based on â resource

reservation mechanism. The DEÄDAALG algorithm is proved to be

exact; that is, it either detects ân unavoidable deadlock resulting from

the input data or provides train scheduling free of deadlocks with the

scheduling atgorithm SIMTRAS. Moreover, it is shown that SIMTRAS

is a polynomial time algorithm with an O(lSl'lfF log lTl) time com'

plexit¡ where T is the set of trâins and S is the set of sections in the

railway topology, Numerical experiments are conducted on Canada's

Vancouver-Calgary single-track corridor of Canadian Pacific Railway

Limited. Then it is shown that SIMTRAS is efficient and provides sched-

ules of a quality that is comparable with that of an exact optimization

algorithm in tens of seconds for up to 30 trains/day oYer a planning

period of 60 days.

Although railway companies are still using controllers for real-time

management of their trains, they also use simulation tools in order to

mimic as closely as possible their daily operations to better under-

stand the delays and better plan the train schedules so as to minimize

travel times (freight trains) or tardiness (all trains). However, simu-

lation tools still lack efficient devices in order to detect and avoid

deadlocks and provide meaningful results on a network operated

under conditions close to its full network capacity. Indeed, as soon

as a deadlock is encountered, any simulation will stop, and very

often it forces some modifications to be entered manually (e.g., train

r will move before train / on segment rail s) in the data set before

the simulation is rerun.

A deadlock is a situation in a resource allocation system in which

two or more processes are in a simultaneous wait state, each one

waiting for one of the others to release a resource before it can pro-

ceed. Deadlock detection and avoidance have been studied not only

for train systems but also for different types ofresource systems (1).

Although it is now a well-solved problem in the context ofresources

and processes where preemption is possible, it remains a poorly

solved problem in the context of trains where train preemption
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does not make sense and where the dynamic location of trains (the

equivalent of processes in a computer system) makes the deadlock

detection and avoidance more complex.

Current practice in existing simulation tools is to use a myopic

look-ahead test to avoid deadlocks, that is, to allow a t¡ain to move

on the next segment if there will be no deadlock in the next two

or three segments (2). With medium or high train densities, such a

myopic vision is not enough to avoid deadlocks.

An original DEADAALG algorithm is proposed for deadlock

detection and avoidance that significantly improves on the classi-

cal banker's and the banker's-like algorithms since it is based on a

track section reservation mechanism. In addition, the DEADAALG
atgorithm has an O(lSl.lfl) complexity, where ?is the setof trains to

be scheduled and S is the set of sections in the railway topology. It
is therefore a highly scalable algorithm, which can easily be embed-

ded in train-scheduling algorithms in the context of the design of a

simulation tool.
The most recent results on deadlock avoidance in railway sys-

tems are reviewed next. Then deadlock avoidance and detection are

discussed, as well as basic train scheduling in the context of train-

scheduling simulation. The newly proposed deadlock avoidance

algorithm is detailed, with the proofofits correctness and complex-

ity, followed by the description ofan efficient scheduling algorithm,

SIMTRAS, which is deduced from the DEADAALG algorithm and

has an O(lSl.lÎl'?log lZl) time complexity. The objective of SIMTRAS,

a modified version of DEADAALG, is to minimize average travel

times of trains, in addition to detecting and avoiding deadlocks.

Numerical results are presented on several dat¿ set instances in order

to evaluate the performance of the DEADAALG and SIMTRAS algo-

rithms and thefu performance comparison with an exact optimization

algorithm for train scheduling.

LITERATURE REVIEW

Although many authors have discussed deadlock prevention, detec-

tion, and avoidance for computer systems, in which preemption is

usually an option in order to break a deadlock, this coverage is not the

case for railway systems. There is still a need today for better deadlock

detection and avoidance algorithms in order to design and develop

efficient simulation tools for railway operations on single{rack or

mesh railway networks.

The most-cited banker's algorithm (3), as well as its modifica-

tions (4 5), is not well adapted to train scheduling, since the algo-

rithms do not guarantee a sffategy for deadlock avoidance with an

efflcient resource reservation mechanism; multiple resource alloca-

tion searches are required without any guarantee of the ability to

generate train scheduling with deadlock avoidance when such train

scheduling exists.
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FIGURE 1 Drawback of Pachl's method 7¡.

More recently, Pachl proposed a new deadlock avoidance method,

called dynamic route reservation (DRR) (O. The key idea is to con-

sider that when a train requests to leave the section it is traveling

on and to move on to the next one, there must be a fast enough check

that this movement is safe before it is allowed and a decision on how

the system must evolve before and after this movement. The DRR

method uses a reservation process that succeeds if the move is allowed

and fails otherwise. The limitation of the DRR method is that on the

one hand, the reservation process can fail even if the initial state is

safe (i.e., there exists a train scheduling without deadlocÐ, and on the

other hand, the process can succeed while the train movement implies

an initially avoidable deadlock. Indeed, the process contains arbitrary

choices at some iteration of the DRR algorithm, which can lead to a

false diagnosis of unavoidable deadlocks.

Later, Pachl modified the DRR reservation process so that if the

initial state is solvable, the reservation succeeds (7). However, the

new reservation process has a critical drawback: no deadlock detec-

tion is included in the atgorithm, and consequently when a deadlock

occurs, the behavior of the algorithm is not defined. Furthermore, a

reservation can be confirmed and later may lead to a deadlock that

could have been avoided, and the deadlock issues with arbitrary

choices at some iterations remain. An illustration is given in Fig-

ure 1, where the green train, initially on Section 04, should not be

allowed to travel on Section 02 (see Rule 6, discussed later in the

proposed reservation process); however, rules in the Pachl algorithm

authorize it.
The algorithm ofPachl is revisited and the reservation mecha-

nism is completely redesigned with four reservation states in order

to obtain an accurate deadlock avoidance algorithm (7). In addition,

several of the rules of Pachl's algorithm are modified to make use

of the four reservation states in order to avoid deadlocks whenever

possible and to make sure that the resulting algorithm encounters a

deadlock only if there is no altemate way to avoid it (unavoidable

deadlock). In summary, the contribution of this study is, on the one

hand, to modify the reservation process so as to make the algorithm
(existence of a deadlock) deterministic and, on the other hand, to

deduce a train scheduling that is deadlock free in polynomial time

whenever one such schedule exists.

DEADLOCK AVO¡DANCE AND DETECTION

AN D TRAI N-SCHEDULING SIMUI.ATORS

A rail system is considered consisting of a single line, with a single

two-way track between stations or sidings. Each track is divided

into segments that are separated by sidings or stations, and each

segment is divided into a set of sections. Tracks are used by trains

traveling in both directions, and trains can meet and pass at stations

or sidings. Sidings allow two trains to pass one another and are the

Set of arrival-departure sections associated with
the origin-destination stations of the trains

^tr
"*s

most common method used to expand rail network capacity. Here

it is assumed that sidings are not overlapping. The set of sections is

defined as the set of segment sections and siding tracks, including

the departure and arrival sections as shown in Figure 1. It is denoted

S and indexed by s.

The set oftrains is described by a set ofeastbound and westbound

trains, denoted T and indexed by r, with DEPART(s, t) being the

departure time of train t at the origin of its departure section. Two

trains in opposite directions are not allowed to be on the same track

segment and they can meet each other only at a siding or a station.

Two trains in the same direction can be running on a segment at the

same time, but they must maintain a safe distance, and they can pass

each other only at a siding or a station. The output ofthe train sched-

uling is either a deadlock ifno feasible scheduling can be found for
all the trains or a train scheduling with the anival and departure

times of all trains at each siding or station.

Train-scheduling simulators are divided into two categories: event

driven (8) and time driven (9). Event-driven simulators work similar

to scheduling: for a given set oftrains, the sum ofthe overall wait-

ing times for each train corresponds to the overall required delays

in order to get a train scheduling without deadlock. In addition, sto-

chastic delays may be generated in order to model unforeseen events,

which often arise in practice. In such a case, the simulator generates a

disturbed train scheduling. Whether time- or event-driven, simulators

all face deadlock issues and sometimes impose some path scheduling

in order to circumvent them. A new deadlock avoidance and detection

algorithm is proposed that can be easily adapted to both event- and

time-driven train-scheduling simulators.

NEW DEADLOCK AVOIDANCE
AND DETECTION ALGORITHM

An original O(lSl.lfD deadlock avoidance and detection algorithm

is proposed called the DEADAALG algorithm, which dynami-

cally makes section reservations for the traìns. If the DEADAALG

algorithm successfully completes a sequence of successful reserva-

tions for all the trains until their final destinations, a train scheduling

without deadlock can be deduced (see the section on the SIMTRAS

algorithm); otherwise, an unavoidable deadlock has been identified.

The DEADAALG algorithm is an exact algorithm, which is free of
the æbitrary selections that lead the algorithm of Pachl to sometimes

reach wrong conclusions (7).

Reservation Process

In each section s, an ordered reservation LIST-RESERV(s) is

defined in which a new reservation can be inserted in any position

En."en
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but the reservation in the flrst position must always be released first.

At the outset, on section ù LIST-RESERV(s) is initialized with the

unique train running on s, or is empty if there is no train on s.

A reservation is made for a pair (s, Ð of a section and a train,

which may have four different states:

STATE-RES (s, t) e {pending, requested, initiating, confirmed}

The reservations and their state evolve as follows over the iterations

of the DEADAALG algorithm. At each iteration of the DEADAALG

algorithm, reservations are in the requested state on the sections on

which the trains are waiting to move forward (Figure 1) or on the

sections on which the trains are running. Consequently, at each itera-

tion, a train is selected (selection rules are discussed later), say t, and

a reservation process is triggered on the unique section where there

is a requested reservation for t In such a case, the train reservation

pæses in the initiating state, and the reservation process keeps adding

pending reservations for t and may prompt reservation processes for

other pairs (s', r') in a requested state.

When no more reservations are triggered and no deadlock issue

has been encountered, the reservation process is claimed successful

and all the reservations added directly by the reservation process

triggered by r change to the confirmed state except the last one,

which changes to the requested state. This process means that there

is a way out for train f up to this last section and another reser-

vation process will need to be triggered until the reservation pro-

cess reaches the final destination of the train. At any time, there is

at most one requested or initiating reservation per section. In the

LIST-RESERV(s) reservation files associated with sections, the

confirmed reservations are always placed at the beginning and

the pending ones at the end.

Train r is occupying siding s-that is, t = occupying (s)-if t has

an initiating or a requested reservation for s. If no train has such a

reservation, then occupying (s) retums to zero.

The reservation process has to obey the following rules:

Rule 1. If the current reservation is not for a siding section, the

train must reserve a section ahead. Moreover, the reservation will
be confirmed when the booking ahead is successful; meanwhile, the

reservation is in a pending state.

Rule 2. Ifa reservation is requested on section s, which does not

contain any pending reservation, a reservation is added in the pending

state in the last position ofthe reservation file on s.

Rule 3. If a reservation is requested on a section that contains

pending reservations, this last reservation (pending state) must be

placed in front of the set of pending reservations; that is, the latest

reservation needs to be confirmed before the previous pending ones.

Then the associated train must reserve one section ahead, since there

are reservations behind it. This process can only occur on segment

sections and is then enforced by Rule 1.

Rule 4. If a reservation is placed behind an initiating reservation,

the reservation fails; then there is a circular wait, that is, a deadlock'

Rule 5. Ifthe reservation is placed behind a requested reservation,

the latter one launches a reservation process and must successfully

confirm it before continuing the process of the former train.

Rule 6. Ifthere is a reservation tequest oftrain r for a siding section,

proceed as follows. Let so and s¡ be the two siding sections.

Rule 6a. There is an initiating reservation on siding section

S¿l lêSefVO OIì S¿.

Rule 6b. The siding is occupied by two trains running in the

same direction as ,.' the two sections are equivalent; choose, for
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example, so. The train occupying s6 tnust immediately launch a

reservation process. Then because ofRule 5, the train occupying s,

must launch a reservation process for it. Reservation of t succeeds

if the last two reservation processes are successful.

Rule 6c. The siding is occupied by two trains running in the

direction opposite r.' the two sections are equivalent; reserve, for

example, so.

Rule 6d. The siding is occupied by a train running opposite I

on r¿ ând a train going in the same direction as I on s¿: reserva-

tion is made on the siding section of the train going in the same

direction as f, so.

Rule 6e. The siding is occupied by one train running in the

direction opposite f, olt s¡i reservâtion is made on the free siding

section, so.

Rule 6f. The siding is occupied by one train running in the

same direction as t, on s,: reservation is made on the occupied

section, s,.

Rule 69. The siding is not occupied: proceed with a reservation

on any of the two, for examPle, so.

DEADAALG Algorithm

Next the DEADAALG algorithm is described in detail; thanks to

the rules described in the previous section, the algorithm determines

whether there exists a feasible schedule without deadlock.

When the reservation process succeeds, each train occupies

exactly one section. The reservation process is relaunched, assum-

ing that the trains are positioned in the section they occupy, until

all the trains have successfully reached their final destination or a

deadlock has been encountered. Train selection influences the aver-

age train travel times but not the detection of a deadlock, as will
be shown in the correctness proof of the DEADAALG algorithm.

The DEADAALG algorithm builds two reservation lists: a global

one, LIST-RESERV(s), and LIST-LOCAL(s), which is local to

RESERVATION(I). It calls two functions, RESERVATION(¡) and

RESERVATION-SEC(s, l), which take care of the reservation of
sections for ¡ until DEADAALG either ends successfully or fails

and of the reservation of f on section s, respectively.

Algorithm DEADAALG
Require: A bidirectional single-track network, its set of sections,

and a set of trains with its train departure plan.

Ensure: Determine whether there exists a feasible schedule without

deadlock.

LIST-RESERV(s) <- Ø for all s e S

STATE(s, t) <- Ø for all (s, Ð e S x I
s e- section on which r is

STATE(s, l) <- requested for all r e I

same section; that is, two trains cannot be on the same section.

While no deadlock has been detected or one train remains in the

system do
Select a train / that has not reached its destination

RESERVATION (')

Function RESERVATION (t)

Require: for all s, ¡: STATE(s, Ð, LIST-RESERV(s), and a par-

ticular train l.
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Ensure: Determine whether I can move without generating a dead-

lock. If yes, update the schedule with an elementary move of ¡' If
not, it fails.

s e- unique section such that STATE (¡ t) = requested

Sini, (_ S

STATE(¡ t) <- initiating
next-sec(s): retums the section after s on the route of f

LIST_LOCAL(¡) <- {s}
s <- next-sec(s)
While s is not a siding track dowÞ Þ Þ Application of Rule 1

RESERVATION-SEC(s, Ð

LIST-LOCAL(Ð e- LIST-LOCAL(r) v {s}

" 
3 ¡s¡r_sec(s)

if the end point of s is the final destination of ¡ then
STATE(s', l) c- confirmed for all s'e LIST-LOCALG)
Terminate function RESERVATION(r)

Þ Þ Þ Let s be a siding track, and s¡ and s2 be the two sections ofit.
t1 <- occupying (sr); rz <- occupying (s2)

Map s1,.r2 to sd, s6 according to Rule 6, and let s'"r*t"d be so

Case l. Apply Rule 6b with sscrected rt RESERVATION(¡¿);

RESERVATION_SEC (s*r""t"d, f)

Case 2. Apply any of the other rules with s*r""d 'e RESERVATION-
sEc(s*r*"d, t)

STATE(s, r) <- confirmed for all s e LIST-LOCAL(r)
STATE(s""r*t"d, l) e- requested

The DEADAALG algorithm is shown in Figure 2, where the

westbound black, purple, green, and blue trains are occupying Sec-

tions 1 6, 06, 04, and I 4, respectively, and the eastbound yellow, red,

and turquoise trains are occupying Sections 12,00, and 10, respec-

tively. The reservation state is indicated with a letter next to each

train on the left or the right depending on whether the train travels

westbound or eastbound. Reservation is first sought for the purple

Tnansportation Research Record 2448

train, and it is assumed without loss of generality that it chooses Sec-

tion 04. It is assumed that contrary to the rules of the DEADAALG

algorithm, the blue train does not immediately trigger a reservation

process as in Pachl's algorithm. Then the green train has to launch

one; this step leads to the situation described in Figure 24. The green

train successfully completes its reservation, but then a deadlock is

reached, since there is no solution with the purple train moving in

Section 04 and the green train moving in Section 03 before any

move of the yellow train. The DEADAALG algorithm is illustrated

in Figure 2å and avoids deadlocks since it immediately triggers a

reservation process for the blue train.

Function RESERVATION-SEC(¡ r)

Require: Train ¡; Section s and its reservation list LIST-RESERV (s);

For all (s, t) € J x Z' STATE(s, r); For all s e S: LIST-RESERV(s)'

Ensure: Determine whether t can successfully reserve s according

to the reservation rules. If not, an unavoidable deadlock has been

identified. If yes, place the reservation and trigger the additional

reservations entailed by a successful reservation for t

t'<- occupying(s)
i <- position of the first pending reservation in LIST-RESERV(s)

STATE(s. ¡) <- oendins
> AU the reservations in LIST-RESERV(s) placed after i arc

oendins
lf t' * Ø and STATE (s, /) = initiating then FAIL Þ Rule 4

else if there is no pg$liug reservation in
LIST-RESERV(s) then
Add t to the end of LIST-RESERV(s)
î { + Ø then RESERVATION(I)

else Insert I in position I of LIST-RESERV(s)

Þ Rule 2

Þ Rule 5
Þ Rule 3

The failure of the previous reservation process is the motivation

of Rule 6b that forces the blue train to reserve before the green

one. Then the blue train can successfully complete its reservation up

to Section 02, the reservations change to confirmed in Sections 03

and 14, and the reservation changes to requested in Section 02. The

green train reservation is entailed and proceeds with areservation in

Section 02 and then causes the blue train to reserve until Section 00'

Piöl

iniüiating, P - pending, and 6 = confirmedl.

.P

-t,

æ.
' f .9:r.

Á*:
P iJilF I

P

P .':"":'
(b)

FIGUFE 2 DEADAALG algorithm [Æq = ¡sqttttt,,, -
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At this point, the red train reserves on Section 01 and its reserva-

tion is then placed before the pending one on the blue train. This
step causes the yellow train reservation and is located between the

blue confirmed and the green pending reservations on Section 03;

it concludes on Section 14, which is not occupied (second scheme).

Finally, all reservations succeed.

It is easy to derive a train scheduling, called the SIMTRAS algo-

rithm, from the DEADAALG algorithm in the context of an event-

driven simulation tool by using the following rule:

Scheduling Rule 1. At any time, train t receives permission to

move to another section only if I has a confirmed reservation in the

frrst position ofthe reservation file on this section. Then the leserva-

tion of the former section (which was also confirmed and is in the

first position) is released and suppressed. If the end point ofthe new

section is the final destination of ¡, t has successfully reached it.

The detailed description of the SIMTRAS algorithm is provided

next.

SIMTRAS Scheduling Algorithm

Require: Set of trains with their departure time and their route to-

ward destination.
Ensure: Produce a train schedule that is free of deadlocks, if pos-

sible. lf not, exhibit an unavoidable deadlock.

Associate the segment and siding sections with their traveling time

Add multiple parallel sections at the origin/destination stations of
the trains
l, <- 0 for s e S; STAIE (E r) <- 0; DEPART(s, ¡) <- 0 for (s, t) e

SXT
for r e ?do

s e- departure section of ¡ (one extremity)
STATE(s, l) <- requested; DEPART(s, l) e departure time of
train t
while there is no failure or one train remains in

the system do Þ Core loop

Select ¡ such that: for all /, DEPARI(s(¡) l) < DEPART(s(I') ¡)
where r = occupying (s (r))

Þ If t is on a siding track, and a reservation of an opposite

train prevents it from leaving at DEPART(s(r), /),

we associate the minimal time at which it can leave

instead of DEPART(s(I), ¿).

ÞTies can be broken (e.g., by selecting the easternmost

siding s) and then for remaining ties, with the selection

of eastbound train.
RESERVATION (')

Þ The reservation is repeated until r has passed the section ofthe
first train of the queue.

If this reservation has directly launched ¿ other reservations

because of rule 5 then
Repeat n times: RESERVATION (r)

return the schedule: Each train I leaves section s at time DEPART
(s, r)

ÞTo be added at the end ofRESERVATION
DEPART(si"i', l) <- min {1> DEPART(sh¡', t)r I can leave sini'at

t and reach s selected with no stop) for s € /J)ræoss u 1s*r'"od1 do

DEPART(s, Ð <- DEPART(sto¡', r) + travel time from the end

of shi' to the end of s
Change the position of t iî L, so that the list remains ordered

by increasing DEPART(s, Ð.
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DEADAALG ALGORITHM PERFORMANCE
AND COMPLEX¡TY

Because of the lack of space, an outline of the correctness and com-
plexity of the DEADAALG algorithm is provided in the case of
sidings with two altemate tracks; the detailed proof can be found

elsewhere (10).

Theorem 1 The DEADAALG algorithm is ûnite. With an O(lSl'lTl)

complexity, the DEADAALG algorithm concludes that at least one

deadlock cannot be avoided, or exhibits a train scheduling free of
any deadlock on a single{rack railway system.

The initial locations of the trains together with their departure

times-the train departure plan-can be arbitrary under the con-

dition that there is at most one train per section and the destina-

tions of the trains correspond to the end points of the line network
(Figure 1). A train departure plan is solvable if all the trains can

reach their destination without encountering a deadlock. Within the

DEADAALG algorithm, a train configuration can be reached in
which all the reservations are in the confirmed state except on one

track section of its destination. For the RESERVATION function,

at each iteration, the train configuration output by the RESERVA-

TION function is such that each train has a unique requested res-

ervation state and the last reservation is for the section on which it
is located. The frrst step of the proof consists in demonstrating that

if RESERVATIONG) is launched on a solvable train conflguration

and concludes, it is possible to reach a train configuration that is

output by RESERVAIION(I) throughout iterative applications of
Scheduling Rule 1 (see end ofthe previous section), and this output

train configuration is solvable. Such a demonstration can be made

in three steps:

Step 1. If a train departure plan is solvable, there exists a solution

such that a train never enters a siding if the other section of this

siding is occupied by a train in the same direction (used for Steps

3,4, and 5).

Step 2. For all train configurations, ifRESERVATION succeeds,

its output train configuration is valid (i.e., at most one train per sec-

tion, and each train is on one section) and reachable from the input
train configuration repetitively by using Scheduling Rule 1.

Step 3. If a RESERVATION succeeds, on the set of spanned rail

track sections in the ouþut train configuration, for each direction, there

is a sequence ofsections without any train in the opposite direction.

Once those three demonstration steps are completed, it can be

concluded, on the basis of Step 3, that the output train confrguration

is solvable. In this way, the focus is not on the trains involved in
the RESERVATION function call, but only on the set of spanned

track sections, and it can be proved to be in a safe situation; that is,

RESERVATION is a safe modifier of the train configurations, which
do not create deadlocks.

It remains to show that RESERVAIION does not fail on a solv-

able train configuration. This is done in two steps. From now on, the

function MODIF is considered, which neglects Rule 6 and allows

the user at each siding to choose the section the train should try to
reserve. Then, as soon as there is a failure, the MODIF function fails

without trying any other choice.

Step 4. If RESERVATION fails, all the choices in the MODIF
function would also fail.
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Step 5. Assume that a function (either MODIF or RESERVA-

TION) fails and did not launch other functions successfully. Then

there is no solution in which each train can go through all the sections

it has tried to reserve while satisfying the rule of Step 1.

Once these demonstration steps are completed, it can be con-

cluded that if RESERVATION fails, all the MODIF function calls

fail, and the case of Step 5 is reached (by using the previous result)

to show that all choices lead to a deadlock, so the input train con-

figuration was not solvable. In this way, it is shown that the choices

made in RESERVATION are relevant: if there is a solution, one is

found. The DEADAALG algorithm works as follows. While there

is a train in the system, one is chosen (the order will only modify the

associated scheduling; see the next section), and RESERVATION is

called on it. If it succeeds, the new train conflguration is continued.

Otherwise, the train departure plan was a deadlock.

Proof of Complexity

RESERVATION-SEC(s, t) cannot be called twice on the same

pair (s, Ð, so it cannot be called more than lsl'lTl times. If LIST-
RESERV(s) is implemented with double linked lists and the point-

ers to the last train are kept in the confirmed state in each list, a
complexity of O(lSl.lrl) is obtained.

Proof of Correction

If the train departure plan is solvable, the first call to RESERVA-

TION succeeds and leads to a solvable train configuration. Then' by

using induction, all the RESERVATION calls succeed and lead to

solvable train configurations. Using Scheduling Rule 1, a schedul-

ing free of deadlock can be shown. If the train departure plan is not

solvable, when DEADAALG concludes, trains must remain in the

system, so the reservation process has failed, which indeed means

that there is no solution without encountering a deadlock.

TRAIN-SCHEDULING SIMULATION WITH
DEADLOCK AVOIDANCE AND DETECTION

It was explained earlier how to derive a flrst train scheduling from

the output of the DEADAALG algorithm; Theorem t has proved

this to be correct. Its improvement with respect to the minimization

ofthe average travel times of the trains is now discussed'

While DEADAALG is applied, the departure time of train ¡ on

section s, denoted by DEPART(s, r), can be computed in polynomial

time by using the section average travel times (with the data pro-

vided by Canadian Pacific Railway). DEPART(s, r) is computed in

order to prevent unnecessary stops on a segment by forcing trains to

wait on the sidings if they cannot reach the next one without stop-

ping. At the beginning of a RESERVATION(/) call, trains may have

to wait on their departure track (which belongs either to a siding or

to a segment).

Assuming that the objective is to minimize the average travel

times of the trains, at each step train I is selected with the small-

est DEPART(s, r) on the s section it is requesting. In this way, the

distribution of the requested sections at each step is the closest to a

snapshot of the future scheduling: it behaves as a greedy algorithm:

at each step, the first train that reached a segment has the highest
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priority to travel it. When a requested reservation is on siding track

s for train t, and a reservation for a train in the opposite direction

prevents it from leaving at DEPART(s, t), the minimal tardiness is

used. In this way, the priority is left to the direction of the first train

crossing the segments, and it reduces the queues at the bottleneck

sidings. This procedure adds an O(loglTl) factor to the complexity'

In addition, to avoid the formation of queues from congestion,

the following feature is added. If the reservation has directly led to

n other reservations because of Rule 5, the process is reapplied n

times on the same train. In this way, when a queue is encountered,

the trains move so that the last train passes the initial section of the

first train. Then when there is a bottleneck, all trains move in one

block, and the case of one train in each direction that monopolizes

the bottleneck alternatively is avoided.

The last modification added is to check ifthe train can be scheduled

before other trains with confirmed reservations. Indeed, if, because of
queues, train r has successfully reserved a section, but there is another

train, say / , that can pass through that section before /, /' should not

be held back. Therefore, at the end ofthe RESERVAIION function, a

check is made whether the reservations can be placed sooner in the

reservation lists. The drawback ofthis modification is an increased

time complexity of the algorithm, because a nonconstant part of
the LIST-RESERV has to be scanned to flnd the minimum pos-

sible time. A basic implementation leads to an O(lSl'lÎl'z logl?'l)

complexity.
In order to process segment data with average travel times that

vary and depend on the direction (east versus west, going up versus

going down, or empty cars versus loaded cars), each segment is mod-

eled by a section. Two trains going in the same direction are allowed

to be initially on the same section ifthe differences in the departure

times are at least the safety time. In this way, the algorithm behaves

as if the segments contain various sections, but the precision of the

position of the trains is more accurate.

NUMERICAL EXPERIMENTS

All the algorithms and functions described in the previous section

were implemented in C++.
The performance of the DEADAALG and SIMTRAS algorithms

on the Canadian Pacific Railway (CPR) network between Calgary

and Vancouver (i.e., the busiest corridor of the CPR network) was

evaluated. It is a single-track railway system, with 77 sidings or sta-

tions. In terms of capacity (number of altemate tracks), one alternate

track is assumed at every station or siding.

A set of 8 to 30 trains is used, with the same number of trains

from Vancouver toward Calgary as from Calgary toward Vancouver'

Departure times are uniformly distributed over a time period of 24 h

when a 24-h planning period is considered, and over a time period of
zaQ-lllTl)hfor planning periods spanning several days (60 in these

experiments). Consequently, when the number of trains increases'

their departure times are less spaced out.

The first observation is that the SIMTRAS algorithm is highly

scalable: the computing time on 77 segments is about l0 s for 1'000

trains and about 40 s for 2,000 trains.

In Figures 3 and 4, the average travel times and their standard

deviations of the overall daily fleet of trains obtained with the SIM-

TRAS algorithm are plotted for different numbers of daily trains

(from 5 to 15 over a 1-day time period in Figure 3 and from 11 to

15 over a 60-day time period in Figure 4). The eastbound trains are

distinguished from the westbound trains.
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FIGUBE 4 Average travel times for train scheduling output
by SDT-TS and SIMTBAS slgonithm for 60-day horizon.

In addition, in order to evaluate the quality ofthe train timetables

output by the SIMTRAS algorithm, the results obtained by the e-

optimal SDT-TS algorithm of Jaumard et al. (.11) were added. Light
blue is for eastbound trains and dark blue for westbound trains.

Taking into account the standard deviations measured over a

1-day time period, it is observed that the average travel times are

fairly stable over a 60-day time period; that is, there is no dete-

rioration of the average travel times. Longer travel times for the

westbound trains are due to the average higher load of the west-

bound trains in comparison with the eastbound trains in the CPR

Vancouver-Calgary corridor.
In Figure 3a the standard deviations of the SMTRAS and SDT-TS

algorithms are fairly similar, and the results of the SIMTRAS algo-

rithm are lower bounds on the SDT-TS, taking into account the accu-

racy (e) of the solutions (see the lower part of Figure 3a). Therein

the average times on the eastbound and westbound trains are not

distinguished. Differences between the solutions of the two algo-

rithms do not increase with the number of trains, and it is believed

that this is one of the first times, or the first time, that such differ-
ences have been measured. No schedule information is integrated in

the SIMTRAS algorithm, which has been implemented as a "pure"

simulation algorithm with a heuristic rule for the next train to be

selected in the reservation process in the core loop (see the detailed

description of the SIMTRAS algorithm).
In Figure 5 the siding use is investigated first over a 1-day period

(Figure 5a) and then over a 60-day period (Figure 5å). The red curve

indicates the number of train meets. While over a l-day period

sidings close to the origin or the destination are not used, the use
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FIGURE 6 Double wait that leads to deadlock avoidance.

of the sidings is much more uniform over a 60-day time period,

although there are differences in their use. The green curve repre-

sents the number of train meets associated with double waits; this

curve indicates that some trains need to wait on any of the tracks of
the sidings (Figure 6). In Figure 6, the blue train waits on the south

Track 04 of the siding, and later the green train will need to wait on

the north Track 14 of the siding in order to avoid a deadlock.

CONCLUSION

A first exact (lsl.lfl'zlogl7l) and highly scalable deadlock detection

and avoidance DEADAALG algorithm is proposed for train sched-

uling. In addition, the DEADAALG algorithm favorably competes

with the SDT-TS exact algorithm of Pachl (7) for the minimization
of travel times and dominates all previously proposed algorithms

for deadlock avoidance in the context of train scheduling. Future

work will include generalizing the DEADAALG algorithm to sidings

with more than two altemate tracks.
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