
DEADLOCK AVOIDANCE AND DETECTION IN RAILWAY SIMULATION SYSTEMS

Bertrand Simon
Ecole Normale Suprieure, Lyon, France

Email: bertrand.simon@ens-lyon.fr

Brigitte Jaumard and Thai Hoa Le
Computer Science and Software Engineering

Concordia University
Montreal (Qc) Canada H3G 1M8

Email: bjaumard@cse.concordia.ca

ABSTRACT
Avoiding or preventing deadlocks in simulation tools for

train scheduling remains a critical issue, especially when com-
bined with the objective of minimizing, e.g., the travel times of
the trains. In this paper, we revisit the deadlock avoidance and
detection problem, and propose a new deadlock avoidance al-
gorithm, called DEADAALG, based on a resource reservation
mechanism. The DEADAALG algorithm is proved to be exact,
i.e., either detects an unavoidable deadlock resulting from the
input data or provide a train scheduling thanks to the scheduling
algorithm, called SIMTRAS, which is free of deadlocks. More-
over, we show that the SIMTRAS algorithm is a polynomial time
algorithm with an O(|S|× |T |2 log |T |) time complexity, where T
is the set of trains and S is the set of sections in the railway topol-
ogy. Numerical experiments are conducted on the Vancouver-
Calgary single-track corridor of Canadian Pacific. We then show
that the SIMTRAS algorithm is very efficient and provides sched-
ules of a quality that is comparable to those of an exact optimiza-
tion algorithm, in tens of seconds for up to 30 trains/day over a
planning period of 60 days.

INTRODUCTION
While railway companies are still using controllers for the

real-time management of their trains, they also use simulation
tools in order to mimic as closely as possible their daily oper-
ations to better understand the delays and better plan the train
schedules so as to minimize the travel times (freight trains) or
the tardiness (all trains). However, simulation tools still lack ef-

ficient devices in order to detect and avoid deadlocks, and pro-
vide meaningful results on a network operated under conditions
close to its full network capacity. Indeed, as soon as a deadlock
is encountered, any simulation will stop, and very often it forces
to enter manually some modifications (e.g., train t will move be-
fore train t ′ on segment rail s) in the data set before rerunning
the simulation. A deadlock is a situation in a resource allocation
system in which two or more processes are in a simultaneous
wait state, each one waiting for one of the others to release a re-
source before it can proceed. Deadlock detection and avoidance
have been studied not only for train systems, but for different
types of resource systems, e.g., [1]. While it is now a well solved
problem in the context of resources and processes where pre-
emption is possible, it remains a poorly solved problem in the
context of trains where train pre-emption does not make sense,
and where the dynamic location of trains (the equivalent of pro-
cesses in a computer system) makes the deadlock detection and
avoidance more complex. Current practice in existing simula-
tion tools [2] is to use a myopic look ahead test to avoid dead-
locks, i.e., allow a train to move on the next segment if there
will be no deadlock in the next 2 or 3 segments. With medium
or high train densities, such a myopic vision is not enough in
order to avoid deadlocks. In this paper, we propose an origi-
nal DEADAALG algorithm for deadlock detection and avoid-
ance which very significantly improves on the classical Bankers
and the Bankers like algorithms, as it is based on a track section
reservation mechanism. In addition, the DEADAALG algorithm
has a O(|S|× |T |) complexity, where T is the set of trains to be
scheduled and S is the set of sections in the railway topology.

1 Copyright c⃝ 2014 by ASME

Proceedings of the 2014 Joint Rail Conference
JRC2014

April 2-4, 2014, Colorado Springs, CO, USA

JRC2014-3864

It is therefore a highly scalable algorithm, which can easily be
embedded in train scheduling algorithms, in the context of the
design of a simulation tool. The paper is organized as follows.
We next review the most recent results on deadlock avoidance in
railway systems. We then discuss deadlock avoidance and de-
tection, as well as a basic train scheduling in the context of train
scheduling simulation. In the following section, we detail the
newly proposed deadlock avoidance algorithm, with the proof
of its correctness and complexity. It is followed by the descrip-
tion of an efficient scheduling algorithm, the SIMTRAS algo-
rithm, which is deduced from the DEADAALG algorithm and
has a O(|S| × |T |2 log |T |) time complexity. Numerical results
are presented on several data set instances in order to evaluate
the performance of the DEADAALG and SIMTRAS algorithms
and their performance comparison with an exact optimization al-
gorithm for train scheduling. Conclusions are drawn in the last
section.

LITERATURE REVIEW
While there have been many papers discussing deadlock pre-

vention, detection and avoidance for computer systems, in which
pre-emption is usually an option in order to break a deadlock,
this is not the case for railway systems. There is still a need
today for better deadlock detection and avoidance algorithms in
order to design and develop efficient simulation tools for railway
operations on single track or mesh railway networks.

The most cited Bankers algorithm [3], as well as its modifi-
cations, see, e.g., [4, 5] are not well adapted to train scheduling,
as the algorithms do not guarantee a strategy for deadlock avoid-
ance with an efficient resource reservation mechanism, and re-
quires multiple resource allocation searches without any guaran-
tee to be able to generate a train scheduling with deadlock avoid-
ance when such a train scheduling exists.

More recently, in [6], Pachl proposed a new deadlock avoid-
ance method, called Dynamic Route Reservation (DRR). The
key idea is to consider that when a train requests to leave the sec-
tion it is traveling and move onto the next one, we must check,
fast enough, that this movement is safe before allowing it, and
decide how the system must evolve before and after this move-
ment. The DRR method uses a reservation process that succeeds
if the move is allowed, and fails otherwise. The limitation of
the DRR method is that, on the one hand, the reservation pro-
cess can fail even if the initial state is safe (i.e., there exists a
train scheduling without any deadlock), and on the other hand,
the process can succeed while the train movement implies an ini-
tially avoidable deadlock. Indeed, the process contains arbitrary
choices at some iteration of the DRR algorithm, which can lead
to a false diagnosis of unavoidable deadlocks.

Later, Pachl [7] modified its reservation process so that if
the initial state is solvable, the reservation succeeds. However,
the new reservation process has a critical drawback: no dead-

lock detection is included in the algorithm, consequently, when
a deadlock occurs, the behavior of the algorithm is not defined.
Furthermore, a reservation can be confirmed while later it may
lead to a deadlock that could have been avoided and the dead-
lock issues with arbitrary choices at some iterations remains. An
illustration is given in Figure 1. Therein, the green train, initially
on Section 04, should not be allowed to travel on Section 02 (see
Rule 6 in our proposed reservation process), however, rules in
the Pachls algorithm authorize it.

FIGURE 1. An illustration of the drawback of Pachls method [7]

In this paper, we revisit the algorithm of Pachl [7] and com-
pletely redesign the reservation mechanism, using 4 reservation
states in order to obtain an accurate deadlock avoidance algo-
rithm. In addition, we modified several of the rules of Pachls
algorithm [7], making use of the four reservation states in order
to avoid deadlocks whenever possible, and making sure that the
resulting algorithm encounters a deadlock only if there is no al-
ternate way to avoid it (we call it unavoidable deadlocks). In
summary, our contribution is, on the one hand, to modify the
reservation process so as to make the algorithm (existence of a
deadlock) deterministic, and, on the other hand, deduce a train
scheduling that is deadlock free in polynomial time, whenever
one such schedule exists.

DEADLOCK AVOIDANCE/DETECTION AND TRAIN
SCHEDULING SIMULATORS

We consider a rail system consisting of a single line, with a
single two-way track between stations or sidings. Each track is
divided into segments that are separated by sidings or stations,
and each segment is divided into a set of sections. Tracks are
used by trains traveling in both directions, and trains can meet
and pass at stations or sidings. Sidings allow two trains to pass
one another and are the most common method used to expand
rail network capacity. In this paper, we assume that sidings are
not overlapping. We define the set of sections as the set of seg-
ment sections and siding tracks, including the departure/arrival
sections as illustrated in Figure 1. It is denoted by S, and indexed
by s.

The set of trains is described by a set of Eastbound and West-
bound trains, denoted by T and indexed by t, with DEPART(s, t)
being the departure time of train t at the origin of its departure

2 Copyright c⃝ 2014 by ASME

section. Two trains in opposite directions are not allowed to be
on the same track segment and they can meet each other only
at a siding or a station. Two trains in the same direction can be
running on a segment at the same time but they must maintain a
safety distance, and they can pass each other only at a siding or
a station.

The output of the train scheduling is either a deadlock if
no feasible scheduling can be found for all the trains, or a train
scheduling with the arrival/departure times of all trains at each
siding/station.

Train scheduling simulators divide into two categories:
event-driven (e.g., [8]) and time driven (e.g., [9]) simulators.
Event-driven simulators works quite similar to scheduling: for
a given set of trains, the sum of the overall waiting times for
each train corresponds to the overall required delays in order to
get a train scheduling without any deadlock. In addition, stochas-
tic delays may be generated in order to model unforeseen events,
which often arise in practice. In such a case, the simulator gener-
ates a disturbed train scheduling. Whether time or event driven,
simulators all face deadlock issues, and sometimes impose some
path scheduling in order to circumvent them. We next propose
a new deadlock avoidance/detection algorithm that can be easily
adapted to both event and time driven train scheduling simula-
tors.

A NEW DEADLOCK AVOIDANCE/DETECTION ALGO-
RITHM

We propose an original O(|S| × |T |) deadlock avoid-
ance/detection algorithm, called DEADAALG algorithm, which
dynamically makes section reservation for the trains. If the
DEADAALG algorithm succeeds with the completion of a se-
quence of successful reservations for all the trains until their final
destinations, then a train scheduling without any deadlock can be
deduced (see the SIMTRAS scheduling algorithm), otherwise,
an unavoidable deadlock has been identified. The DEADAALG
algorithm is an exact algorithm, which is free of arbitrary selec-
tions that leads the algorithm of Pachl [7] to sometimes reach
wrong conclusions.

Reservation Process
In each section s, we define an ordered reservation

LIST RESERV(s). Therein, we can insert a new reservation in
any position, but always release first the reservation in the first
position. At the outset, on section s, LIST RESERV(s) is initial-
ized with the unique train running on s, or is empty if there is no
train on s.

A reservation is made for a pair (s, t) of a section and a train,
and may have 4 different states:

STATE RES(s, t) ∈ {pending, requested, initiating,confirmed}.

The reservations and their state evolve as follows over the
iterations of the DEADAALG algorithm. At each iteration of
the DEADAALG algorithm, reservations are in state requested
on the sections on which the trains are waiting to move forward,
see Figure 1, or on the sections on which the trains are running.
Consequently, at each iteration, a train is selected (selection rules
are discussed below), say t, and a reservation process is triggered
on the (unique) section where there is a requested reservation for
t. In such a case, the train reservation passes in the initiating state,
and the reservation process keeps adding pending reservations
for t, and may prompt reservation processes for other pairs (s′, t ′)
in a requested state. When no more reservation is triggered and
no deadlock issue has been encountered, the reservation process
is claimed successful and all the reservations added directly by
the reservation process triggered by t, changes to confirmed state
except the last one, which changes to requested state. It means
there is a way out for train t up to this last section, and another
reservation process will need to be triggered until the reservation
process reaches the final destination of the train. Note that, at
any time, there is at most one requested or initiating reservation
per section. In the LIST RESERV(s) reservation files associated
with sections, the confirmed reservations are always placed at the
beginning, and the pending ones at the end.

We say that train t is occupying siding s, i.e., t =
occupying (s), if t has an initiating or a requested reservation for
s. If no train has such a reservation, then occupying(s) returns
0.

The reservation process has to obey the following rules:

Rule 1. If the current reservation is not for a siding section, the
train must reserve a section ahead. Moreover, the reservation
will be confirmed when booking ahead will be successful,
meanwhile, the reservation has a pending state.

Rule 2. If a reservation is requested on section s, which does
not contain any pending reservation, reservation is added in
pending state, in the last position of the reservation file on s.

Rule 3. If a reservation is requested on a section that contains
pending reservations, this last reservation (pending state)
must be placed in front of the set of pending reservations,
i.e., the latest reservation needs to be confirmed before the
previous pending ones. Then, the associated train must re-
serve one section ahead, as there are reservations behind it.
Note that this can only happen on segment sections, and is
then enforced by Rule 1.

Rule 4. If a reservation is placed behind an initiating reservation,
the reservation fails: it means there is a circular wait, i.e., a
deadlock.

Rule 5. If the reservation is placed behind a requested reserva-
tion, the latter one launches a reservation process, and must
successfully confirm it before continuing the process of the
former train.

Rule 6. If there is a reservation request of train t for a siding

3 Copyright c⃝ 2014 by ASME

FIGURE 2. An illustration of the DEADAALG algorithm

section, proceed as follows. Let sa and sb be the two siding
sections.

Rule 6a. There is an initiating reservation on siding section
sa: reserve on sb.

Rule 6b. The siding is occupied by two trains running in
the same direction as ts: the two sections are equiv-
alent, choose, e.g., sa. The train occupying sb must
immediately launch a reservation process. Then, be-
cause of Rule 5, the train occupying sa must launch a
reservation process for it. Reservation of t succeeds if
the last two reservation processes are successful.

Rule 6c. The siding is occupied by two trains running in
the direction opposite to that of t: the two sections are
equivalent, reserve, e.g., sa.

Rule 6d. The siding is occupied by a train opposite to that
of t on sb and a train going in the same direction as t
on sa: reservation is made on the siding section of the
train going in the same direction as t, sa.

Rule 6e. The siding is occupied by one train in the direction
opposite to that of t, on sb: reservation is made on the
free siding section, sa.

Rule 6f. The siding is occupied by one train in the same di-
rection as t, on sa: reservation is made on the occupied
section, sa.

Rule 6g. The siding is not occupied: proceed with a reser-
vation on any of the two, e.g., sa.

DEADAALG ALGORITHM
We next describe in detail the DEADAALG algorithm that,

thanks to the rules described in the previous section, determines
whether there exists a feasible schedule without any deadlock.
When the reservation process succeeds, each train occupies ex-
actly one section. The reservation process is re-launched, assum-
ing that the trains are positioned in the section they occupy, until

all the trains have successfully reached their final destination, or
a deadlock has been encountered.

Train selection influences the average train travel times, but
not the detection of a deadlock, as will be shown in the correct-
ness proof of the DEADAALG algorithm.

The DEADAALG algorithm builds two reservation lists, a
global one, LIST RESERV(s) and LIST LOCAL(s) that is local to
RESERVATION (t). It calls two functions, RESERVATION (t) and
RESERVATION SEC(s, t) that take care of the reservation of sec-
tions for t until either DEADAALG ends successfully or fails,
and of the reservation of t on section s, respectively. Any fail of
RESERVATION SEC(s, t) entails a fail for RESERVATION (t).

Algorithm DEADAALG
Require: A bidirectional single-track network, its set of sections
and a set of trains with its train departure plan.
Ensure: Determine whether there exists a feasible schedule
without any deadlock.

LIST RESERV(s)← /0 for all s ∈ S
STATE(s, t)← /0 for all (s, t) ∈ S×T
s← section on which t is
STATE(s, t)← requested for all t ∈ T� There cannot be two trains with a requested state on the same
section, i.e., two trains cannot be on the same section

While no deadlock has been detected or one train remains in the
system do

Select a train t that has not reached its destination
RESERVATION (t)

Function RESERVATION (t)
Require: For all s, t: STATE(s, t), LIST RESERV(s), and a partic-
ular train t.
Ensure: Determine whether t can move without generating a

4 Copyright c⃝ 2014 by ASME

deadlock. If yes, update the schedule with an elementary move
of t. If no, fails.
s← unique section such that STATE(s, t) = requested
sinit← s
STATE(s, t)← initiating
next sec(s): returns the section after s on the route of t
LIST LOCAL(t)←{s}
s← next sec(s)
While s is not a siding track do � Application of Rule 1

RESERVATION SEC(s, t)
LIST LOCAL(t)← LIST LOCAL(t)∩{s}
s← next sec(s)

if the endpoint of s is the final destination of t then
STATE(s′, t)← confirmed for all s′ ∈ LIST LOCAL(t)
Terminate function RESERVATION (t)

� Let s be a siding track, and s1 and s2 be the two sections of it.
t1← occupying (s1); t2← occupying (s2)
Map s1,s2 to sa,sb according to Rule 6, and let s selected be sa
Case 1: Apply Rule 6b with s selected ; RESERVATION (tb) ;
RESERVATION SEC(sselected, t)
Case 2: Apply any of the other rules with s selected ; RESER-
VATION SEC(sselected, t)

STATE(s, t)← confirmed for all s ∈ LIST LOCAL(t)
STATE(sselected, t)← requested

An illustration of the DEADAALG algorithm is provided in
Figure 2, where the Westbound black, purple, green and blue
trains are occupying sections 16, 06, 04 and 14 respectively,
while the Eastbound yellow, red and turquoise trains are occu-
pying sections 12, 00 and 10 respectively. The reservation state
is indicated with a letter next to each train, on the left or to the
right depending on whether the train travels Westbound or East-
bound. Reservation is first sought for the purple train, and we
assume without loss of generality that it chooses section 04. Let
us assume that, contrary to the rules of the DEADAALG algo-
rithm that the blue train does not immediately trigger a reserva-
tion process. Then, the green train has to launch one, and leads to
the situation described in the top of Figure 2. The green train suc-
cessfully completes its reservation, but then we reach a deadlock,
as there is no solution with the purple train moving in section 04,
and the green train moving in section 03 before any move of the
yellow train.

Function RESERVATION SEC(s, t)
Require: Train t ; Section s and its reservation list
LIST RESERV(s) ;
For all (s, t)∈ S×T : STATE(s, t) ; For all s∈ S: LIST RESERV(s).
Ensure: Determine whether t can successfully reserve s accord-
ing to the reservation rules. If no, an unavoidable deadlock has

been identified. If yes, place the reservation and triggered the
additional reservations entailed by a successful reservation for t.

t ′← occupying (s)
i← position of the first pending reservation in LIST RESERV(s)
STATE(s, t)← pending� all the reservations in LIST RESERV(s) placed after i are pend-
ing
If t ′ ̸= /0 and STATE(s, t ′) = initiating then FAIL � Rule 4
else if there is no pending reservation in LIST RESERV(s) then �
Rule 2
Add t to the end of LIST RESERV(s)
If t ′ ̸= /0 then RESERVATION (t ′) � Rule 5
else Insert t in position i of LIST RESERV(s) � Rule 3

The failure of previous reservation process is the motivation
of Rule 6b that forces the blue train to reserve before the green
one. Then, the blue train can successfully complete its reserva-
tion up to section 02, the reservations change to confirmed in
sections 03 and 14 and the reservation changes to requested in
section 02. Then, the green train reservation is entailed, and
proceeds with a reservation in section 02, and then causes the
blue train to reserve until section 00. At this point, the red train
reserves on section 01 and its reservation is then placed before
the pending one on the blue train. Then, this causes the yellow
train reservation, and is located between the blue confirmed and
the green pending reservations on section 03, and concludes on
section 14, which is not occupied (second scheme). Finally, all
reservations succeed.

Note that it is easy to derive a train scheduling from the
DEADAALG algorithm, in the context of an event driven sim-
ulation tool, using the following rule: Scheduling Rule 1. At any
time, train t receives permission to move to another section only
if t has a confirmed reservation in the first position of the reser-
vation file on this section. Then, the reservation of the former
section (which was also confirmed, and in first position) is re-
leased and suppressed. If the endpoint of the new section is the
final destination of t, it has successfully reached it.

DEADAALG ALGORITHM PERFORMANCE AND COM-
PLEXITY

Due to the lack of space, we provide below an outline of the
correctness and complexity of the DEADAALG algorithm in the
case of sidings with 2 alternate tracks, and refer the reader to [10]
for the detailed proof.
Theorem 1. The DEADAALG algorithm is finite. With an
O(|S| × |T |) complexity, the DEADAALG algorithm concludes
that at least one deadlock cannot be avoided, or exhibits a train
scheduling free of any deadlock on a single track railway system.

The initial locations of the trains together with their depar-
ture times, i.e., the train departure plan, can be arbitrary under

5 Copyright c⃝ 2014 by ASME

the condition that there is at most one train per section, and the
destinations of the trains correspond to the endpoints of the line
network, see Figure 1. A train departure plan is solvable if all
the trains can reach their destination without encountering any
deadlock. Within the DEADAALG algorithm, it means that we
can reach a train configuration in which all the reservations are
in the confirmed state except on one track section of its desti-
nation. We first focus on the RESERVATION function. At each
iteration, the train configuration which is output by the RESER-
VATION function is such that each train has a unique requested
reservation state and this last reservation is for the section it is ly-
ing on. The first step of the proof consists in demonstrating that
if RESERVATION (t) is launched on a solvable train configuration
and concludes, then it is possible to reach a train configuration
that is output by RESERVATION (t) throughout iterative appli-
cations of Scheduling Rule 1 (see end of Section 4.2), and this
output train configuration is solvable. Such a demonstration can
be made in three steps:

Step 1. If a train departure plan is solvable, there exists a solu-
tion such that a train never enters a siding if the other section
of this siding is occupied by a train in the same direction
(used for Steps 3, 4 and 5).

Step 2. For all train configurations, if RESERVATION succeeds,
then its output train configuration is valid (i.e., at most one
train per section, and each train is on one section) and reach-
able from the input train configuration, repetitively using
Scheduling Rule 1.

Step 3. If a RESERVATION succeeds, then, on the set of spanned
rail track sections, in the output train configuration, for each
direction, there is a sequence of sections without any train
in the opposite direction, going through the latter rail track.
Once those three demonstration steps are completed, we can
conclude, based on Step 3, that the output train configura-
tion is solvable. This way, we do not focus on the trains
involved in the RESERVATION function call, but only on the
set of spanned track sections, and we prove it to be in a safe
situation, i.e., RESERVATION is a safe modifier of the train
configurations, which do not create deadlocks. It remains
to show that RESERVATION does not fail on a solvable train
configuration. This is done in 2 steps. From now on, we
consider the function MODIF, which forgets Rule 6, and al-
lows the user, at each siding, to choose the section the train
should try to reserve. Then, as soon as there is a failure, the
MODIF function fails without trying any other choice.

Step 4. If RESERVATION fails, all the choices in the MODIF
function would also fail.

Step 5. Assume that a function (either MODIFor RESERVATION)
fails, and did not launch successfully other functions. Then,
there is no solution in which each train can go through all
the sections it has tried to reserve, while satisfying the rule
of Step 1.

Once these demonstration steps are completed, we can con-
clude that if RESERVATION fails, all the MODIFfunction calls fail,
and we can come down to the case of Step 5 (using the previous
result) to show that all choices lead to a deadlock, so the input
train configuration was not solvable. This way, we show that the
choices made in RESERVATION are relevant: if there is a solu-
tion, it finds one. The DEADAALG algorithm works as follows.
While there is a train in the system, we choose one (the order
will only modify the associated scheduling, see Section 5), and
call RESERVATION on it. If it succeeds, we continue with the
new train configuration. Otherwise, we claim that the train de-
parture plan was a deadlock. Proof of the complexity. We can-
not call twice RESERVATION SEC(s, t) on the same pair (s,t), so
it cannot be called more than |S| × |T | times. If we implement
LIST RESERV(s) using double linked lists and keep pointers to
the last train in the confirmed state in each list, we get a com-
plexity of O(|S|× |T |).
Proof of the correction. If the train departure plan is solvable, the
first call to RESERVATION succeeds and leads to a solvable train
configuration. Then, using induction, all the RESERVATION calls
succeed and lead to solvable train configurations. Using Schedul-
ing Rule 1, we can exhibit a scheduling free of any deadlock.
If the train departure plan is not solvable, when DEADAALG
concludes, trains must remain in the system, so the reservation
process has failed, which indeed means that there is no solution
without encountering a deadlock.

TRAIN SCHEDULING SIMULATION WITH DEADLOCK
AVOIDANCE/DETECTION

We explained earlier how to derive a first train schedul-
ing from the output of DEADAALG algorithm, which has been
proved to be correct, thanks to Theorem 1. However, no speed
value, and no distances are taken in account in the DEADAALG
algorithm: it worlds as a board game algorithm, yes/no the train
can move on the next section. We now discuss how to improve
it with respect to the minimization of the average travel times of
the trains. The resulting algorithm is called SIMTRAS.

While applying SIMTRAS, the departure time of train t on
section s, denoted by DEPART(s, t), can be computed in polyno-
mial time, using the section average travel times (those data were
provided by CPR Canadian Pacific Railway in our experiments).
DEPART(s, t) is computed in order to prevent unnecessary stops
on a segment, by forcing trains to wait on the sidings if they can-
not reach the next one without stopping. At the beginning of a
RESERVATION (t) call, trains may have to wait on their departure
track (that either belongs to a siding or to a segment). Assuming
the objective is to minimize the average travel times of the trains,
at each step, we select train t with the smallest DEPART(s, t) on
the s section it is requesting. This way, the distribution of the
requested sections at each step is the closest to a snapshot of the
future scheduling, and it behaves as a greedy algorithm: at each

6 Copyright c⃝ 2014 by ASME

29h
30h
31h
32h
33h
34h
35h
36h
37h

M
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

Simtras W
Simtras E
std_ts W
std_ts E

30h

31h

32h

33h

5 7 9 11 13 15

G
lo

ba
lm

ea
n

Number of trains

std_ts
Simtras

(a) One day horizon

32h

35h

38h

41h

44h

11 trains
12 trains

13 trains
14 trains

15 trains

32h

35h

38h

41h

44h

0 10 20 30 40 50 60

M
ea

n
tr

av
el

ti
m

e

Day indices

(b) 60 day horizon

FIGURE 3. Average travel times of the train scheduling output by the SIMTRAS and SDT TS algorithms.

step, the first train that reached a segment has the highest prior-
ity to travel it. When a requested reservation is on siding track s
for train t, and a reservation for a train in the opposite direction
prevents it from leaving at DEPART(s, t), we use the minimal tar-
diness. This way, the priority is left to the direction of the first
train crossing the segments, and it reduces the queues at the bot-
tleneck sidings. This adds a O(log |T |) factor to the complexity.

In addition, to avoid the formation of queues due to con-
gestion, we added the following feature. If the reservation has
directly led to n other reservations, because of Rule 5, the pro-
cess is reapplied n times on the same train. In this way, when we
encounter a queue, the trains move so that the last train passes the
initial section of the first train. Then, when there is a bottleneck,
all trains move in one block, and we avoid the case of one train,
in each direction, that monopolizes the bottleneck alternatively.

The last modification added is to check if the train can be
scheduled before other trains with confirmed reservations. In-
deed, if, because of queues, train t has successfully reserved a
section, but there is another train, say t’, that can pass through
that section before t, t’ should not be held back. Therefore, at
the end of the RESERVATION function, we check if the reserva-
tions can be placed sooner in the reservation lists. The draw-
back of this modification is to increase the time complexity of
the algorithm, because we have to scan a non-constant part of the
LIST RESERVto find the minimum possible time. A basic imple-
mentation leads to a O(|S|× |T |2 log |T |) complexity. In order to
process segment data with average travel times that vary and de-
pend on the direction (East vs. West, going up vs. going down, or
empty vs. loaded cars), we modelled each segment by a section.
We allow two trains, going in the same direction, to be initially

on the same section if the differences of the departure times are
at least the safety time. In this way, the algorithm behaves as if
the segments contain various sections, but the precision of the
position of the trains is more accurate.

NUMERICAL EXPERIMENTS
All the algorithms and functions described in the previous

section were implemented in C++. We evaluated the perfor-
mance of the DEADAALG and SIMTRAS algorithms on the
Canadian Pacific Railway (CPR) network between Calgary and
Vancouver, i.e., the busiest corridor of the CPR network. It is a
single track railway system, with 77 sidings/stations. In terms
of capacity (number of alternate tracks), we assume 1 alternate
track at every station/siding.

We use a set of 8 to 30 trains, with the same number of
trains from Vancouver towards Calgary as from Calgary towards
Vancouver. Departure times are uniformly distributed over a time
period of 24 hours when considering a 24h planning period, and
over a time period of 24(1− 1/|T |) hours for planning periods
spanning several days (60 in our experiments). Consequently,
when the number of trains increases, their departure times are
less spaced out.

The first observation is that the SIMTRAS algorithm is
highly scalable: the computing time on 77 segments is about 10
seconds for 1,000 trains, and about 40 seconds for 2,000 trains.

In Figure 3, we plotted the average travel times of the over-
all daily fleet of trains obtained with the SIMTRAS algorithm,
for different numbers of daily trains (from 5 to 15 over a one day
time period in Figure 3(a) and from 11 to 15 over a 60 day time

7 Copyright c⃝ 2014 by ASME

FIGURE 4. A double wait that leads to deadlock avoidance

FIGURE 5. Siding usage

period in Figure 3(b), and their standard deviations. We distin-
guish the Eastbound (lower ↕ in Figure 3(a) and lower diagram
in Figure 3(b)) from the Westbound trains (upper ↕ in Figure 3(a)
and upper diagram in Figure 3(b)).

In addition, in Figure 3(a), in order to evaluate the quality
of the train timetables output by the SIMTRAS algorithm, we
added the results obtained by the ε-optimal SDT TS algorithm of
Jaumard et al. [11], see the blue (darker) intervals. As for the
SIMTRAS algorithm, the blue intervals are centered. We ob-
serve that the standard deviations of the SIMTRAS and SDT TS
algorithms are fairly similar, and we verify that the results of the
SIMTRAS algorithm are lower bounds on the SDT TS, taking
into account the accuracy (ε) of the solutions: see the lower part
of Figure 33(a) as the accuracy of the SDT TS algorithm is on the
overall average travel times, in which average times on the East-
bound and Westbound trains are not distinguished. Differences
between the solutions of the two algorithms do not increase with
the number of trains, and we believe it is one of the first times or
the first time, that such differences are measured. Note that no
schedule information is integrated in the SIMTRAS algorithm,
which has been implemented as a ”pure” simulation algorithm
with a heuristic rule for the next train to be selected in the reser-
vation process in the core loop, see the detailed description of the
SIMTRAS algorithm.

In Figure 3(b), taking into account the standard deviations
measured over a one day time period, we observe that the aver-
age travel times are fairly stable over a 60 day time period, i.e.,
there is no deterioration of the average travel times over the time.
Longer travel times for the West bound trains is due to the aver-
age higher load of the Westbound trains in comparison with the
Eastbound trains in the CPR Vancouver/Calgary corridor.

In Figure 5, we investigate the siding usage firstly over a one

day period in Figure 5(a) and then over a 60 day period in Figure
5(b), in addition to the advantage of double wait as illustrated in
Figure 4.

While, in practice, trains are usually not allowed to wait on a
main track, in a double wait scenario, we allow trains to wait on
a main track. We illustrate in Figure 4 the advantage of doing so
in order to decrease the number of deadlocks. Indeed, if the blue
train waits on the main track, then the green train (extreme right)
can move on the siding track, and then waits. The blue train can
then move Eastbond, as well as the red train (extreme left). Once
the red train passes the siding, the green train can move again
Westbound. However, if no train is allowed to wait on the main
track, then the situation represented in Figure 4 corresponds to a
deadlock.

In Figure 5, the red curve indicates the number of train
meets. While over a one day period, sidings close to the ori-
gin or the destination are not used, we observe that the usage of
the sidings is much more uniform over a 60 time period, although
there are differences in their usage. The green curve represents
the number of train meets associated with double waits, meaning
that some trains need to wait on any of the tracks of the sidings.

CONCLUSIONS
We have proposed a first exact O(|S| × |T |2 log |T |) and

highly scalable deadlock detection and avoidance DEADAALG
algorithm for train scheduling. In addition, the SIMTRAS algo-
rithm favorably competes with the SDT TS exact algorithm of [6]
for the minimization of travel times, and dominates all previ-
ously proposed algorithms for deadlock avoidance in the con-
text of train scheduling. Future work will include generalizing

8 Copyright c⃝ 2014 by ASME

the DEADAALG and the SIMTRAS algorithms to sidings with
more than 2 alternate tracks.

ACKNOWLEDGMENT
B. Jaumard was supported by NSERC (Natural Sciences and

Engineering Research Council of Canada) and by a Concordia
University Research Chair (Tier I). .

REFERENCES
[1] Toueg, S., and Steiglitz, K., 1981. “Some complexity re-

sults in the design of deadlock-free packet switching net-
works”. SIAM Journal on Computing, 10(4), pp. 702–712.

[2] Sahin, I., 1999. “Railway traffic control and train schedul-
ing based on inter-train conflict management”. Transporta-
tion Research Part B: Methodological, 33, p. 511534.

[3] Dijkstra, E., 1965. Cooperating sequential processes.
Tech. Rep. EWD-113, Technical University, Eindhoven,
The Netherlands.

[4] Belik, F., 1987. “Deadlock avoidance with a modified
bankers algorithm”. BIT, 27, p. 290305.

[5] Belik, F., 1990. “An efficient deadlock avoidance tech-
nique”. IEEE Transactions on Computers, 39, pp. 882–
888.

[6] Pachl, J., 2007. “Avoiding deadlocks in synchronous rail-
way simulations”. In 2nd International Seminar on Railway
Operations Modelling and Analysis.

[7] Pachl, J., 2011. “Deadlock avoidance in railroad operations
simulations”. In 90th Annual Meeting of the Transportation
Research Board.

[8] Grube, P., nez, F. N., and Cipriano, A., 2011. “An event-
driven simulator for multi-line metro systems and its ap-
plication to santiago de chile metropolitan rail network”.
Simulation Modelling Practice and Theory, 19, January,
p. 393405.

[9] Li, F., Gao, Z., Li, K., and Yang, L., 2008. “Efficient
scheduling of railway traffic based on global information
of train”. Transportation Research, Part B, 42, pp. 1008–
1030.

[10] Simon, B., Jaumard, B., and Le, T., 2013. Deadlock avoid-
ance and detection in railway simulation systems. Cahiers
du GERAD G-2013-43, GERAD, Montreal (QC) Canada.

[11] Jaumard, B., Le, H., Tian, H., Akgunduz, A., and Finnie,
P., 2013. “An enhanced optimization model for scheduling
freight trains”. In Proceedings of Joint Rail Conference
(JRC), pp. 1–10.

9 Copyright c⃝ 2014 by ASME

