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Large-scale maintenance in industrial plants requires the entire shutdown of production units for disassem-
bly, comprehensive inspection, and renewal. We derive models and algorithms for this so-called turnaround

scheduling that include different features such as time-cost trade-off, precedence constraints, external resource
units, resource leveling, different working shifts, and risk analysis. We propose a framework for decision sup-
port that consists of two phases. The first phase supports the manager in finding a good makespan for the
turnaround. It computes an approximate project time-cost trade-off curve together with a stochastic evaluation.
Our risk measures are the expected tardiness at time t and the probability of completing the turnaround within
time t. In the second phase, we solve the actual scheduling optimization problem for the makespan chosen
in the first phase heuristically and compute a detailed schedule that respects all side constraints. Again, we
complement this by computing upper bounds for the same two risk measures.
Our experimental results show that our methods solve large real-world instances from chemical manufactur-

ing plants quickly and yield an excellent resource utilization. A comparison with solutions of a mixed-integer
program on smaller instances proves the high quality of the schedules that our algorithms produce within a
few minutes.
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1. Introduction
Large-scale maintenance activities are conducted on
a regular basis in industrial settings such as chemi-
cal manufacturing, refining, or power plants. Entire
production units are shut down for disassembly, com-
prehensive inspection, and renewal. Such a process
is called shutdown and turnaround (or turnaround,
for short). It is an essential process but causes high
out-of-service cost. Therefore a good schedule for
the turnaround has a high priority to the manufac-
turer. A good schedule is not simply a short sched-
ule. The project execution can be speeded up at the
expense of adding resource units, mostly in the form
of additional workers. Thus, short projects cause high
resource costs, whereas cheap projects take a long
time. Moreover, in practice, task execution times typ-
ically involve uncertainty. Such uncertainty arises as
a result of unforeseen repair jobs, and naturally, a
short schedule is less robust against unexpected repair
jobs or processing delays than a schedule with a long
duration that offers more flexibility for rescheduling.
Such considerations are fundamental in the decision
process of a turnaround project manager. We sup-
port this process by analyzing the trade-off between

project duration and project cost as well as the effects
on the stability of schedules. Our main contribution
is an optimization algorithm within a larger decision
support framework that computes a detailed schedule
of given project duration with the aim of minimizing
the total resource cost.
Clearly, turnaround projects differ in size, duration,

and particular specifications depending on the actual
industrial site. Generally, the turnaround of a large
plant may take in total up to one year and must be
repeated every four to six years. Typically, such large
projects are split into a sequence of shutdowns of sin-
gle production units that are planned individually.
The time horizon for those projects is often between
two and four weeks. The complex working steps of
a turnaround are planned in advance with very high
granularity. They are split into many jobs that must
be executed in parallel or directly after each other by
workers with a particular specialization such as elec-
tricians, pipe fitters, inspectors, cranes, crane drivers,
or other craftsmen. In theory, models with jobs that
are executed by workers with different specializations
seem plausible, but here we focus on the case where
each job needs exactly one specialized type of worker.
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This is a consequence of the fine resolution of working
steps in turnaround planning, and it is not too restric-
tive because we can model the more general case by
enforcing parallel precedence relations for subsets of
jobs; see §3 for more details. At this level of planning,
the turnaround of an entire manufacturing site may
consist of 100,000 to 150,000 jobs, whereas the typi-
cally considered (sub)project size for shutting down;
e.g., a single cracker is between 500 and 2,000 jobs.
More explicitly, we model a turnaround project

as a huge number of precedence-constrained opera-
tions or jobs that must be executed by maintenance
groups of different specializations. Scheduling these
is already a complex task because various working
shifts must be respected. However, in this particular
problem another issue increases the complexity dras-
tically: the duration of a job is flexible in the sense that
a job can be accelerated by increasing the number of
resource units (workers) allocated to it. Typically, tech-
nical reasons restrict the choice to a range between a
maximum and minimum number of workers. We can
assume that the duration of a job is a nonincreasing
discrete function of the number of workers allocated
to it. Because of communication overhead between the
workers, the duration of a job decreases at a smaller
rate than the rate at which the number of assigned
workers increases.
We call workers with a particular specialization a

resource type and an individual worker from such a
group a resource unit of that type. Each resource unit
causes a certain cost for each time unit that it is
used. For various resource types, a certain number of
resource units is generally available on the manufac-
turing site for flexible job assignments. We call them
internal resources. However, during a turnaround, a
significant overhead of work is to be done in a short
time. This requires hiring external resources if internal
capacities are exhausted. Typically, external resource
units can only be hired for a certain minimum time
period and must be paid for even when they are idle.
Therefore, we aim for a schedule in which the con-
sumption of these resource types is leveled over the
period in which they are hired—in our model, this is
the entire turnaround period. By leveled, we mean that
resource units are allocated to jobs in such a way that
the resource usage of each individual resource type
does not change much over time. In the end, we want
to hire as few workers as possible and pay as little
as possible for them being idle. In §4 we introduce
concrete measures for the quality of leveling.
A feasible schedule consists of an allocation of

resource units to jobs and a feasible temporal plan-
ning of jobs with respect to given precedence con-
straints and working shifts. Ideally, we would like
to minimize both the project duration and its cost.
However, there is the trade-off mentioned above; fast

project executions cause high cost, whereas cheap
project executions take a long time.
Determining a good project duration depends on

several aspects that need to be balanced against each
other. These include the total resource cost for hiring
resource units, the total production loss caused by the
shutdown during the turnaround period, and a “risk
cost” because of unexpected repairs and delays that
are inherent in maintenance jobs and tend to become
more influential the more ambitious, i.e., the shorter
the project duration. Let us neglect the risk cost for a
moment. Then, for a given production loss per time
unit, one would ideally like to find a schedule that
minimizes total cost, i.e., the sum of out-of-service
cost and the cost for hiring resource units over the
turnaround period. If the out-of-service-cost cannot
be quantified, then the manager defines a deadline for
the turnaround; our goal is to find a feasible schedule
of minimum resource cost that meets this deadline.
However, risk issues cannot be neglected in pra-

ctice—in particular, not in turnaround projects that
contain many maintenance jobs that may cause
unforeseen repair work or, even worse, delay the
completion of the job until, say, the delivery of a
spare part. Thus the deadline for a turnaround can
only be met with a certain probability that tends
to decrease with an ambitious deadline. Informa-
tion on the risk involved with a decision about the
length of a turnaround is crucial to a manager. For-
tunately, companies typically have stochastic infor-
mation based on experiences with earlier turnaround
projects. This information permits a stochastic evalua-
tion of the risk of the computed schedule with respect
to (w.r.t.) meeting the deadline. The risk measures we
use are (i) the expected tardiness of a schedule w.r.t.
the chosen deadline and (ii) the probability distribu-
tion of the project duration. Computing these mea-
sures is #P -complete in general, which makes efficient
computations unlikely. However, for problems with-
out shifts and with unlimited resource units, we can
apply known techniques to determine an upper bound
on the expected tardiness for a given project sched-
ule as a function of its completion time. Interestingly,
the computation of this function is algorithmically
strongly related to the algorithm we use to determine
the deterministic trade-off between project duration
and project cost. Our stochastic evaluation of rele-
vant schedules enables the project manager to select
a particular schedule according to his or her own risk
preferences.

1.1. Our Contribution
In this paper, we first introduce the problem of
turnaround scheduling and give an overview on
the large variety of related scheduling problems.
We then develop a two-phase model for turnaround
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scheduling and present techniques to solve the indi-
vidual phases. The first phase supports the project
manager in finding a good project duration t observ-
ing his or her risk preferences, and the second phase
optimizes the use of resources for the chosen dura-
tion t. A case study with real-world turnaround
scheduling problems carried out in cooperation with
the management consulting company T.A. Cook Con-
sultants and two of their customers at chemical manu-
facturing sites shows that our methods yield provably
good solutions to large-scale turnaround problems in
a very short time.
The two-phase approach that we implemented

serves as a decision support tool. In the first phase,
the strategic planning phase, a project manager has to
decide on the desired makespan for the turnaround
project and has to quantify the number of workers
and other resources available for the project. To sup-
port this decision process, we provide an approxima-
tion of the trade-off between project duration and cost
as well as a stochastic evaluation of the risk for meet-
ing the makespan. The second phase, the detailed plan-
ning phase, is then a combination of resource allocation
and leveling for the chosen deadline that we solve
heuristically. We complement this by a risk analysis of
the computed detailed schedule that provides upper
bounds for the risk measures “expected tardiness”
and “probability of meeting the project duration.”
Our methods can handle real-world instances with

100,000 to 150,000 jobs from chemical manufacturing
plants within a few minutes and yield solutions with
a leveled resource consumption. To evaluate the per-
formance of our methods, we compare our solutions
with optimal solutions for problems with up to 50 jobs
that are computed by solving a mixed-integer pro-
gram (MIP) formulation of the turnaround problem
that includes all the deterministic features such as dif-
ferent shifts, variable resource allocation, resource lev-
eling, and complex precedence constraints. Our MIP
is time indexed and thus is much too large for typical
problem sizes of turnarounds. In contrast, our heuris-
tic algorithm is fast and produces solutions of good
quality as the comparison with the MIP shows.
To the best of our knowledge, this is the first time

that the turnaround scheduling problem is treated
with this combination of optimization techniques. The
interest of our cooperation partner T.A. Cook Consul-
tants in these methods has led to a commercial ini-
tiative in which a software company integrated our
methods as add-ons to Microsoft Office Project.

2. Related Work
The turnaround scheduling problem has many rela-
tionships with well-established areas of scheduling.

Time-Cost Trade-off. Given a project network of
jobs and precedence constraints, a job may be executed

in different modes, each associated with a certain pro-
cessing time and resource requirement. The time-cost
trade-off problem asks for the relation between the dura-
tion of a project and its cost, which is determined by
the amount of nonrenewable resource units necessary
to achieve the project duration. For a nice survey, we
refer to De et al. (1995). Fixing either the project dura-
tion or the cost leads to the closely related optimiza-
tion problems with the objective to minimize the other
parameter; these problems are referred to as the dead-
line problem and the budget problem, respectively.
When the resource costs for the jobs are continuous

linear nonincreasing functions of the job-processing
times, then the deadline and the budget problem can
be solved optimally in polynomial time as has been
shown independently by Fulkerson (1961) and Kelley
(1961). Later, Phillips and Dessouky (1977) gave an
improved version of the original algorithms in which
iterative cut computations in a graph of critical jobs
yield the piecewise linear time-cost trade-off curve
that describes the trade-off between project duration
t and associated cost for all t. The running time is
polynomial in the number of breakpoints of the opti-
mal time-cost trade-off curve, which may, however,
be exponential in the input size (see Skutella 1998b).
(A breakpoint of such a piecewise linear function is
a point in which the function is continuous but not
differentiable.) Elmaghraby and Kamburowski (1992)
generalized previous algorithms to solve a more gen-
eral problem variant in which jobs may have release
dates and deadlines and arbitrary time lags between
them. They provided a combinatorial algorithm that
iteratively computes minimum cost flows in an iter-
atively transformed network modeling the time lags.
Other cost functions have been considered such as
convex (Lamberson and Hocking 1970, Kapur 1973,
Siemens and Gooding 1975, Adel and Elmaghraby
1984) and concave function (Falk and Horowitz 1972).
In practical applications, the discrete version of this

problem plays an important role. Here, the process-
ing time of a job is a discrete nonincreasing function
of the amount of the renewable resource allocated to
it. This problem is known to be ��-hard (see De
et al. 1997). Skutella (1998a) derived approximation
algorithms for the deadline and budget problem as
well as bicriteria approximations, and Deineko and
Woeginger (2001) gave lower bounds on the approx-
imability of the problems.
Various exact algorithms and metaheuristics have

been implemented for the discrete time-cost trade-off
problem. For an overview, we refer to Chapter 8 in
the book by Demeulemeester and Herroelen (2002).

Time-Cost Trade-off with Capacity Constraints.
Motivated by restrictions on resource capacities in
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real-world applications, the time-cost trade-off prob-
lem has been investigated in problem variants with
renewable as well as nonrenewable resource types of
limited capacity. Such problems are also known as
multimode (resource-constrained) project scheduling prob-
lems (see, e.g., Demeulemeester and Herroelen 2002).
Various versions of linear and discrete time-cost

trade-off–related problems have also been considered
in the theory of machine scheduling. Besides the
available machines, there is an additional resource
that allows us to accelerate the processing of jobs.
Approximation algorithms and even polynomial-time
approximation schemes have been derived. Review-
ing these results in detail is beyond the scope of
this paper. We only mention scheduling with control-
lable processing times, which concerns the allocation of
nonrenewable resource units (see the recent survey
of Shabtay and Steiner 2007), scheduling jobs with
resource-dependent processing times, which assumes a
discrete renewable resource (see Grigoriev et al. 2007
and references therein), and scheduling malleable jobs
on one or several machines, where the duration of a
job is determined by the number of machines allo-
cated to it (see, e.g., Du and Leung 1989, Lepère et al.
2002, and Jansen and Zhang 2006).

Resources with Calendars and Working Shifts.
In real-world applications, resources are rarely con-
tinuously available for processing. Working shifts,
machine maintenance, or other constraints may pro-
hibit the processing in certain time intervals. Also, in
machine scheduling, various problems with limited
machine availability have been considered, and we
refer to the survey by Schmidt (2000) for complexity
and approximation results.
In project scheduling, such constraints are known

as break calendars or shift calendars. Zhan (1992)
provides an exact pseudopolynomial algorithm for
computing earliest and latest start times in a gener-
alized activity network that may contain minimum
and maximum time lags but no capacity bounds
on the resource types. His modified label-correcting
algorithm respects jobs that may be preempted and
those that must not. This algorithm has been modi-
fied into a polynomial-time algorithm by Franck et al.
(2001). In the same paper, they also provide priority
rule-based heuristics for solving resource-constrained
project scheduling problems, where each job may
require different resource types.
Yang and Chen (2000) consider a job-based, more

flexible version of calendars represented by time-switch
constraints. These constraints specify for any job sev-
eral time windows in which the job may be processed.
They also extend the classical critical path method
to analyze project networks when resource capac-
ities are unbounded. Time-switch constraints have
also been incorporated by Vanhoucke et al. (2002) in

the deadline version of the discrete time-cost trade-
off problem to model different working shifts. They
present a branch-and-bound algorithm that was later
improved by Vanhoucke (2005). Experimental results
were shown for instances with up to 30 jobs and up
to 7 different processing modes. Recently, Vanhoucke
and Debels (2007) investigated the deadline problem
with time-switch and other side constraints with the
objective to minimize the net present value.

Resource Leveling. Typical goals in project man-
agement are the minimization of the total project
duration (makespan), the maximization of net present
value or more service-oriented goals such as minimiz-
ing waiting time or lateness. In certain applications,
the objective functions are based on resource utiliza-
tion (see, e.g., Neumann et al. 2003). In particular,
when resource units are rented for a fixed time period,
then they should be utilized evenly over this time.
Harris (1990) developed a critical path-based heuris-

tic for resource leveling of precedence-constrained
jobs with fixed processing times and no side con-
straints. Neumann and Zimmermann (2000) presented
an heuristic and exact algorithms for the resource-
leveling problem with temporal and resource con-
straints. In a number of earlier publications, such as
Bourges and Killebrew (1962), Easa (1989), Phillips
and Garcia-Diaz (1981), and Bandelloni et al. (1994),
heuristics and exact algorithms for simplified problem
versions can be found.
Considering a variant of interval scheduling,

Cieliebak et al. (2004) aim for minimizing the max-
imum number of used resource units. They derive
approximation algorithms and hardness results.

Stochastic Analysis of Project Networks. The
importance of dealing with uncertainty in schedul-
ing is reflected by the large number of publications
on various aspects of this topic. These results are
mostly restricted to problems without resource con-
straints and without shift calendars. Several meth-
ods have been developed for analyzing the makespan
Cmax in project networks with random processing
times, e.g., bounding the expected makespan or its
distribution function. An exact computation of the
makespan distribution—even just a single point of
this function—is, in general, a #P -complete problem
(as shown by Hagstrom 1988) that presumably rules
out its efficient computation. For a general overview,
we refer to Adlakha and Kulkarni (1989); for a survey
on methods for bounding the makespan distribution,
we refer to Möhring (2001). An experimental study
comparing the performance of various such methods
has been pursued by Ludwig et al. (2001).
In particularly, we want to mention the works

of Meilijson and Nádas (1979) and Weiss (1986).
They consider jobs with stochastically dependent
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processing times and determine an upper bound on
the expected tardiness Ɛ�max�t−Cmax�0�� for a given
project schedule with makespan Cmax as a function of
the completion time t (in the model without resource
constraints and calendars). Interestingly, the compu-
tation of this bound is strongly related to solving a
linear time-cost trade-off problem.

3. Problem Description
In turnaround scheduling we are given a set � of
n jobs and a set � of renewable resource types. Each
job needs a finite number of resource units of exactly
one resource type k ∈� for its processing.
Processing alternatives of job j ∈ � are character-

ized by the number rj of allocated resources and its
resulting processing time pj�rj �. We assume that rj is
integral and bounded from below and above by rminj

and rmaxj , respectively. Let �k ⊆ � denote the set of jobs
that requires resource type k ∈ �. Because each job
requires exactly one resource type, we can partition
the set of jobs � into disjoint subsets �1��2� � � � �����.
The amount of work for processing a job j ∈ � is

given by wj�rj � = rj · pj�rj �. We assume that the pro-
cessing time is nonincreasing and the work is non-
decreasing in the number of resource units. Thus the
monotonicity properties

pj�r1�≥ pj�r2� and wj�r1�≤wj�r2�

hold for any r1� r2 with rminj ≤ r1 ≤ r2 ≤ rmaxj . We denote
each processing alternative for a job j ∈ � given by the
resource allocation rj as a mode of job j and denote the
set of feasible modes for job j by �j . Thus each feasi-
ble mode for job j defines a tuple �rj� pj � of allocated
resource units rj and associated processing time pj .
Furthermore, each job j ∈ � has associated a release
date sj ∈�+ and a due date dj ∈�+ that define the time
window �sj� dj � in which j must be processed. Due
dates are quite rare in our application, but they gener-
alize the model, and they turned out to be useful for
the project planner. Precedence constraints are given
by a directed acyclic graph G= �V �E�, where the ver-
tices correspond to jobs and there is an edge �i� j� ∈ E
if job i precedes job j (see the end of this section for
generalized precedence constraints).
A vector of processing times p = �p1� � � � � pn� is

a feasible realization if for each j = 1� � � � �n there is
a resource allocation rj ∈ �rminj � � � � � rmaxj � such that
pj = pj�rj �. If the resource allocation rj is clear from the
context, we will simply write pj instead of pj�rj � and wj

instead of wj�rj �.
A schedule for a turnaround problem is given

by a pair �S� r�, where r = �r1� � � � � rn� with rj ∈
�rminj � � � � � rmaxj � for each job j is a vector of feasible
resource allocations, and S is a vector S = �S1� � � � � Sn�
of start times for the jobs. A schedule �S� r� is time

feasible if it respects the release dates, due dates, and
precedence constraints; i.e.,

Si + pi ≤ Sj for all �i� j� ∈ E

and
sj ≤ Sj ≤ Sj + pj ≤ dj for all j ∈ � �

The maximum completion time of all jobs, the make-
span, is denoted by

Cmax�S� r� �=max
j∈�

�Sj + pj��

For a time-feasible schedule �S� r�, we denote

rk�S� r� t� �=
∑

j∈�k� Sj≤t<Sj+pj

rj

as the resource utilization of resource type k ∈ � at
time t, and

Rk �=max
t

rk�S� r� t� for all k ∈�

as the maximum resource utilization of resource type
k ∈ �, i.e., the maximum number of resource units
of type k utilized at any time during the turnaround.
The maximum resource utilization of a resource
type k may be bounded by a constant 
Rk ∈�+, which
we call the capacity of that resource type.
Each resource type k ∈ � has an individual calen-

dar of working shifts, which represents the availabil-
ity periods of k. Jobs cannot be interrupted; thus they
need to be executed during one availability period.
Given a project deadline T , we define the actual work-
ing time Tk ≤ T of resource type k ∈� as the total time
that resources units of type k are available in the time
interval �0�T �.
We call a schedule resource feasible w.r.t. resource

capacities and calendars if for any resource type
k ∈�, the capacity bounds are respected, Rk ≤ 
Rk, and
each job is executed during one of the availability
periods of the corresponding resource type k.
For each k ∈�, we are given a cost rate ck that rep-

resents the cost per unit of resource type k per time
unit. The set of resource types is partitioned into two
disjoint subsets, �l and �f , depending on their pay-
ment type. Resources of type k ∈ �l have to be paid
during the entire turnaround period for the maximum
amount needed. These are mainly external workers
who are hired for the complete turnaround period,
and they must be paid for even if they are temporarily
idle. Clearly, the goal of a project manager is to min-
imize the amount of paid idle time. In other words,
the maximum resource utilization of those resource
types should be minimized. We say that these resource
types need to be leveled. In contrast, resource types from
set �f are paid for the actual work they perform. We
say they are free of leveling. In our application, these
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are mainly internal resource types. The job sets cor-
responding to �l and �f are denoted by � l and � f ,
respectively.
Now, we can express the total cost of a sched-

ule �S� r� as
∑
k∈�l

ck ·Rk · Tk +
∑
k∈�f

∑
j∈�k

ck ·wj�rj ��

The first term is called the resource availability cost and
represents the cost of resource types that must be lev-
eled; the second term, called the resource utilization
cost, represents the cost of jobs that do not need to be
leveled.
The turnaround scheduling task is to find a sched-

ule that is time feasible and resource feasible and has
minimum total cost. In practice, the first term clearly
dominates the cost function. If we neglect the cost for
jobs that do not need to be leveled, we speak of the
resource-leveling problem. This is the problem on which
we focus in this paper.
For later use, we introduce two additional param-

eters that are related to the goal of minimizing the
resource availability cost. The first parameter indi-
cates how well a single resource type k is leveled and
is called the relative resource consumption of resource
type k and is denoted by  k. This parameter is defined
for a schedule �S� r� as the total work done by
resource type k relative to the maximum resource uti-
lization Rk over the total available working time of
resource type k; i.e.,

 k �=
∑

j∈�k wj

Tk ·Rk

� (1)

The second additional parameter !k is very useful
within the resource-leveling algorithm itself when we
need to identify a resource type that is badly leveled
and causes high cost. We call it the relative idleness
cost !k and define it as the cost for the wasted avail-
able but not utilized work volume over the available
work volume; i.e.,

!k �= �1−  k� · ck� (2)

Next, we present a mixed-integer programming for-
mulation of the turnaround scheduling problem for a
given project deadline T . It borrows from the classi-
cal time-indexed formulation based on start times for
resource-constrained project scheduling by Pritsker
et al. (1969) and incorporates the multimode character-
istics of jobs. For an overview on models and notation
in resource-constrained project scheduling, we refer
to Brucker et al. (1999). We use binary decision vari-
ables xjlt that indicate whether job j ∈ � starts in mode
l ∈�j at time t ∈ �0�1� � � � � T − 1�.
We model resource calendars implicitly using start-

time-dependent processing times. In a preprocessing

step we compute for each job j ∈ � the processing
time pjlt when the job starts at time t in mode l ∈�j .
If a job cannot be scheduled with respect to calendars
at time t, we set the corresponding variable xjlt to
zero. The resource requirements of job j in mode l is
denoted by rjl. The formulation is as follows:

min
∑
k∈�

ck ·Rk · Tk

s.t.
∑
l∈�j

T−1∑
t=0

xjlt = 1 ∀ j ∈ �� (3)

∑
l∈�j

T−1∑
t=0

t · xjlt −
∑
l∈�j

T−1∑
t=0

�t+ pilt� · xilt ≥ 0

∀ �i� j� ∈ E� (4)

∑
j∈�k

t∑
#=0

∑
l∈�j

rjl · xjl# · ��#+pjl#>t��#�≤Rk

∀k ∈�� t = 0� � � � � T − 1� (5)

0≤Rk ≤ 
Rk ∀k ∈�� (6)

xjlt ∈ �0�1� ∀ j ∈ �� l ∈�j � t = 0� � � � � T − 1�
Constraint (3) assures that each job starts exactly

once in one of its modes. Because of (4), every two
jobs i� j respect the precedence constraints.
Finally, inequalities (5) and (6) guarantee that the

capacity constraints are met.
Because of the time expansion, time-indexed formu-

lations for scheduling problems are usually hopeless
for large problem instances. However, small instances
can be solved using integer programming solvers such
as CPLEX, and we can thus evaluate the performance
of our algorithm by comparing the computed solution
with an optimal solution for such instances.
We conclude this section with a remark on fur-

ther so-called generalized precedence constraints that are
important in some practical turnaround problems.
Our algorithms can handle these requirements, but
we do not elaborate on this in the present paper.
Constraints occurring in our applications are as

follows:
• Fixed start times: A job j ∈ � must start at its

release date Sj = sj .
• Parallel sets: Two jobs i� j ∈ � must be exe-

cuted in parallel for the processing time of the
shorter job. Without loss of generality we assume
that pi�ri� < pj�rj �. The condition is fulfilled if Si ≥ Sj
and Si + pi�ri�≤ Sj + pj�rj �.
• Forbidden sets: Two jobs i� j ∈ � that form a

forbidden set must not be executed in intersecting
time intervals. This is expressed by the following
condition Sj ≥ Si + pi�ri� or Si ≥ Sj + pj�rj �.
• Zero maximum finish-start time lags: Job j has to

be executed immediately after the completion of job i;
i.e., Sj = Si + pi�ri� must hold.
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• Zero maximum start-start time lag: Two jobs i� j ∈ �
have to start at the same time Si = Sj .

4. Solution Methods
We implemented a two-phase solution method for
turnaround scheduling problems that serves as a deci-
sion support tool. In the following subsections, we
give a brief outline of the method and describe it in
more detail.

Phase I.We compute a time-cost trade-off curve that
provides the approximate cost for any possible choice
of duration T for the turnaround. To this end, we relax
the integrality of the resource usage and neglect the
resource capacities and working shifts. Then we solve
a linear time-cost trade-off problem with time win-
dows to optimality. Finally, we apply an heuristic scal-
ing technique to approximate the true costs and to
compute associated feasible schedules. This includes
computing job modes for every T that results from
scaling the breakpoints of the linear time-cost trade-off
curve.
Based on that curve (and information about the risk

involved; see below), the decision maker chooses a
particular makespan for the turnaround duration. This
may be fixed by the decision maker based on his or
her risk aversion and other preferences but could also
be the result of minimizing the total cost when out-of-
service costs are available. The job modes computed
for the chosen makespan are the basis for the second
phase.

Phase II. In this phase, we solve the actual turn-
around scheduling problem with all side constraints
for the turnaround duration chosen in the first phase.
We determine feasible start times for all jobs and
adjust the resource allocation such that the temporal
unavailabilities of resources as well as the given dead-
line T are respected. We find a feasible schedule with
a resource profile that is leveled over the project dura-
tion, i.e., a schedule with minimized resource avail-
ability cost.

Stochastic support. The decision-making process of
the user is supported in both phases by a risk analysis
of the respective solutions. We estimate the expected
tardiness of relevant schedules for a deadline T and
the probability of meeting it. In the first phase, this is
done for each schedule corresponding to a breakpoint
of the (relaxed) time-cost trade-off curve, and in the
second phase, it is done for the final schedule after
resource leveling. We complement the expected tardi-
ness of a schedule with confidence intervals that tell
the project manager how likely that certain project
deadlines will be met.
In the following sections, we describe the two main

phases of our algorithm and the stochastic analysis in
detail.

4.1. Phase I—The Time-Cost Trade-off Curve
The trade-off between project duration and project
cost can be represented as a so-called time-cost trade-
off curve. For each possible project duration the curve
provides the minimum cost. Such a curve can guide a
manager when making a decision on a project dead-
line. Clearly, computing the exact curve is computa-
tionally intractable for a complex turnaround problem;
however, an approximate curve is sufficient for deci-
sion support.
In this phase, we do not consider the resource avail-

ability cost as defined in §3. Instead, we compute
the actual resource utilization cost without the addi-
tional cost for idle times when renting and leveling
resources. The reason is that the cost of idle times is
very sensitive to small changes in the schedule that
occur only at project execution. Therefore, at this stage,
when a project manager must decide on a project
duration, he or she is interested only in the trade-off
between project duration and resource utilization cost
and does not consider the cost for idle times.
To compute such an approximate time-cost curve,

we first compute an optimal curve for a relaxed prob-
lem and turn it into a feasible solution using rounding
and scaling techniques. To help decide on the project
duration, we add the out-of-service-cost per time unit
and thus determine a minimum point of the resulting
curve. The general outline of the procedure is summa-
rized below, followed by a detailed description. Fig-
ure 1 visualizes the effects of the procedure and the
curves.

Algorithm 1 (Time-cost trade-off algorithm with
scaling)
Input: Turnaround scheduling instance.
Output: Approximate time-cost trade-off curve
with respect to resource availability cost.

1 Compute the optimal time-cost trade-off curve
for the linearized problem version without
resource constraints (calendars, capacities).

2 for each breakpoint p of the curve do
3 Round up fractional resource assignments

to the nearest integral value rj �= � rj 
.
4 Apply list scheduling heuristics that respect

calendars and capacity constraints.
5 Scale point p and apply dominance rules.

In the first step we relax our problem. We linearize
the job modes �j and allow nonintegral resource allo-
cations rj . We convert the modes of each job into a lin-
ear function by linear interpolation. This cost function
defines the dependency between processing time and
cost. Furthermore, we assume that all resource types
are available continuously, and we do not level the
resource usage. Then the problem reduces to assign-
ing a (possibly nonintegral) resource consumption rj ,
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Figure 1 Time-Cost Trade-off Curves
Notes. The optimal solution for the linear time-cost trade-off problem for
a relaxation of the original turnaround problem is shown in (a). The opti-
mal solution of the relaxation is turned into an approximate solution for the
original turnaround problem by applying heuristics at the breakpoints in (b).
The time is given in hours and the cost is given in euros. Adding the out-of-
service cost to the cost function yields a cost optimal makespan and serves
together with risk analysis to support managerial decision making.

and thus a processing time pj , to each j ∈ � and find-
ing a time-feasible schedule of minimum resource
utilization cost. This is the classical time-cost trade-
off problem with additional release dates and dead-
lines (time windows) for jobs.
This problem without time windows can be solved

optimally in polynomial time in the input and the
number of breakpoints of the curve (Fulkerson 1961,
Kelley 1961, Phillips and Dessouky 1977). In fact,
most of our real-world instances do not require the
more sophisticated and time-consuming algorithm
that respects also time windows by Elmaghraby and
Kamburowski (1992).
The optimal time-cost curve for the relaxed problem

is a lower bound on the optimal time-cost curve for the
trade-off problem including all other side constraints.
Now, the schedules associated with points on

the time-cost trade-off curve need not be feasible.
Usually, resource assignments are nonintegral and
resource calendars are not respected. To obtain a cost
curve respecting these conditions, we consider all
breakpoints T i of the relaxed curve and turn the cor-
responding schedules into feasible schedules. Interpo-

lation between the cost of these schedules then gives
the new approximate-cost curve.
For a particular T i, we round up a nonintegral

resource allocation rj to the nearest integer. This
increases the resource utilization cost but also guaran-
tees that we do not exceed the job completion times
from the linear relaxations. Once all jobs j ∈ � have
integral values rj , we greedily try to decrease the
resource allocation and thus the cost without violat-
ing the deadline T i.
Furthermore, schedules must be adapted to respect

the given calendars. This will usually result in job
deferrals and increased cost, but this way, we obtain
feasible solutions. We apply simple but fast list-
scheduling heuristics that reschedule with respect to
the resource availability (timewise and capacitywise).
We refer to this as scaling a breakpoint T i and the asso-
ciated schedule. Within this heuristic approach, we
may turn two infeasible schedules �S1� r1� and �S2� r2�
with makespans Cmax�S1� r1� > Cmax�S2� r2� and costs
cost�S1� r1� < cost�S2� r2� into two feasible schedules
�S ′

1� r
′
1� and �S ′

2� r
′
2� with costs cost�S ′

1� r
′
1� < cost�S ′

2� r
′
2�

but with makespans Cmax�S
′
1� r

′
1� < Cmax�S

′
2� r

′
2�. In

that case, schedule �S ′
2� r

′
2� is dominated by �S ′

1� r
′
1�,

and therefore, we do not store �S ′
2� r

′
2�. The scaled

time-cost trade-off curve is obtained by interpolation
between the points obtained after scaling and apply-
ing this dominance rule; see Figure 1(b). The difference
between the linearized curve and the scaled curve
obviously depends on the resource calendars and the
resource capacities. In our real-world instances the
project durations are scaled by a factor between 2
and 3, whereas the costs hardly differ.
The resulting curve is an approximation of the opti-

mal time-cost trade-off curve where the computed
costs in the breakpoints are an upper bound for
the optimal resource utilization cost. We guarantee
that each point of the curve corresponds to a fea-
sible schedule respecting all constraints. However,
the resulting curve need not be convex anymore; see
Figure 1(b).
Although resource calendars and precedence con-

straints are considered, leveling the resource usage
over time has not yet been addressed. This objective is
taken care of in the next phase when a project deadline
is fixed. In the current stage, the approximated time-
cost trade-off curve together with the stochastic analy-
sis as described in §4.3 guides a turnaround manager
in his or her decision on the project duration T .

4.2. Phase II—Resource Leveling and
Detailed Scheduling

We enter the second phase with a maximum project
duration T and a feasible choice of processing times p&

(with corresponding resource consumptions r&j for
j ∈ � ) given by the chosen approximate solution of
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the first phase. Whereas T remains fixed, the choice
of job modes �r&j � p

&
j � serves solely as a starting point

for solving the resource-leveling problem. We con-
struct a schedule �S� r� that is time feasible and
resource feasible and minimizes the resource avail-
ability cost

∑
k∈�l ck ·Rk · Tk. In Figures 4 and 5 in §5

we illustrate the difference between a schedule with
temporary high-resource consumptions and a sched-
ule with evenly used resource types that causes lower
resource availability cost based on real turnaround
data.
Our solution approach focuses on the minimiza-

tion of the resource availability cost with respect to
the feasibility of a schedule. To that end, we com-
bine binary search on capacity bounds with different
list-scheduling procedures. Recall that only resource
types k ∈�l need to be considered for leveling.
We compute initial lower and upper bounds, LBk

and UBk, respectively, on the maximum resource uti-
lization Rk for each resource type k ∈ �l. A lower
bound is given by the minimum resource require-
ment of each job and by the minimum total workload
divided by the working time of the corresponding
resource. More formally,

Rk ≥ LBk =max
{
max� rminj � j ∈ �k��

∑
j∈�k

rminj · pj�rminj �

Tk

}
�

The upper bounds UBk for k ∈ � might be
part of the input; otherwise, we compute an earli-
est start schedule �S� r� without limitations in the
resource availability and use the resulting maximum
resource utilization as upper bounds; i.e., UBk �=
maxt rk�S� r� t�.
In our algorithm we iteratively choose a resource

type k ∈�l that is badly leveled, meaning that a large
fraction of the total availability cost is spent on idle
times of resource type k with respect to its current
bound UBk. In §3 we therefore introduced the mea-
sure of relative idleness cost (2) for each resource
type k depending on the maximum resource utiliza-
tion Rk. At this stage of the algorithm, the relative
idleness cost is defined based on the current upper
bound UBk on the maximum resource utilization Rk,
i.e., with a slight abuse of notation,

!k =
Tk ·UBk−

∑
j∈�k wj�rj �

Tk ·UBk

· ck�

In each iteration, we choose a resource type k& with
maximum relative idleness cost, !k& =maxk∈�l !k, and
try to decrease the upper bound UBk& on its capacity
while all other resource capacities remain fixed. We
aim at decreasing UBk& to ' · UBk& +�1 − '� · LBk& for
some 0<'< 1. An upper bound can be decreased to a
value u if we find a time- and resource-feasible sched-
ule for the given total project duration T that utilizes at

no time more than u units of resource type k&. We ver-
ify this property heuristically by using list-scheduling
procedures. Each of these procedures considers a dif-
ferent ordering (list) of jobs by which jobs are inserted
into a partial schedule. With respect to the given prece-
dence constraints, it is desirable to place jobs accord-
ing to a topological ordering. Such orderings can be
obtained by forward and backward computations of
earliest start dates, earliest completion times, latest
start dates, and latest completion times of the jobs with
respect to the given shifts and the given makespan T .
We also use lists that have a random switch; i.e., the
beginning of the list up to a randomly chosen position
is sorted by increasing earliest start dates, whereas the
jobs after that position are sorted by increasing latest
completion times. We use five different such lists.
If the list-scheduling procedures do not yield a fea-

sible schedule, we find the lowest upper bound that
allows a feasible schedule by binary search. If an
upper bound UBk cannot be decreased in this way, we
do not consider resource type k for leveling anymore
and set its lower bound to LBk =UBk.
Notice that in this procedure, we do not aim

at decreasing one particular badly leveled resource
type immediately down to its lowest utilization limit.
Instead, we consider all badly leveled resource types
in a round-robin fashion and decrease their utiliza-
tion in each round to a certain fraction of the pre-
vious bound. The idea behind this is to balance the
effects that the decreases in utilization of different
resource types have on each other. Experiments have
revealed that it is beneficial to focus not only on a sin-
gle resource type but on all of them, one after another.
The relative idleness cost !k steers the prioritization
of resource types within the round-robin selection.
A more formal description of our algorithm is as

follows.

Algorithm 2 (Resource leveling)
Input: Set �l of resource types that must be
leveled, set L of topologically sorted
lists of jobs, maximum total project
duration T , and parameter ' ∈ �0�1�.

Output: Leveled resource utilization Rk

for each resource type k ∈�l.
1 Set LBk and UBk to initial values

for each resource type k ∈�l.
2 while ∃ k ∈�l� LBk <UBk do
3 Choose resource type k& ∈�l with

LBk& <UBk& and !k& maximum.
4 Set a temporary upper bound

uk& �= ' ·UBk& +�1−'� ·LBk& .
5 for each list in L do
6 if List scheduling yields a feasible schedule

with makespan at most T then
7 Set UBk& �= uk& .
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8 goto Step 3.
9 // if List scheduling failed for each list:
10 Set LBk& �= uk& .
11 if LBk& =UBk& then
12 Rk& �= LBk& .
13 �l �=�l\�k&�.
14 else
15 goto Step 4.

At the end of §3 we introduced additional, more-
complex generalized precedence relations between
jobs. Our algorithm can handle these constraints:
when inserting a job into a partial schedule during the
list-scheduling procedure (Step 6), this type of addi-
tional constraint can be respected. However, depend-
ing on their complexity, these constraints weaken
the performance of the list-scheduling heuristics and
clearly slow down the computation process. In our
real-world instances, these constraints have mainly a
common structure. In most cases they involve cranes
that are required for a short time in parallel to a long
job. It appears that cranes are no bottleneck resource
in our instances and they are free of leveling. There-
fore we can eliminate those precedence constraints
in the resource leveling and handle them in a post-
processing step without causing major conflicts. Sim-
ilarly, we can substitute a group of jobs associated
within generalized precedence relations by a single
one if their time windows and respective resource
capacities are no bottleneck and reinsert them after
the resource-leveling procedure. In this way, gener-
alized precedence constraints become rare and the
increase in the running time is acceptable.
Another refinement of our list scheduling heuris-

tic concerns the flexibility in the resource utilization
and thus the influence on the processing times of
jobs. Traditional list-scheduling procedures deal with
fixed realizations of processing times. Notice that so
far we have only used the unchanged job modes as
they were fixed in the first phase of the turnaround
decision framework. Certainly, these first choices are
based on an optimal solution for a relaxed problem
version, and thus they are a good starting point, but
we would neglect optimization potential if we kept
them fixed. In particular, in such a complex schedul-
ing situation as the turnaround problem, the “wrong”
resource allocation for a single job may block the
resource unfavorably and prohibit an already feasible
solution for a certain resource capacity.
We address this issue by incorporating a local

search on the resource allocation rj of jobs j ∈ � into
our list-scheduling procedure. If a job j cannot be
inserted because its current processing time exceeds
the beginning of a nonavailable period of the respec-
tive resource for a small amount, then we increase
the number of assigned resource units rj (if feasible),

and thus, we decrease the processing time until the
job eventually fits feasibly into the schedule. If this
is not successful, we recursively include predecessors
of j in this search. This refinement may speed up the
resource leveling algorithm noticeably. The reason is
because Steps 5 and 6 of the binary search find a fea-
sible solution much faster and accept a decrease of
the upper bound on the capacity.

4.3. Risk Analysis in Phases I and II
One of the essential features of turnaround schedul-
ing is the fixed upper bound on the makespan T for
the whole turnaround. This bound T determines the
hiring of external resources, the loss of production
of the factory unit undergoing the turnaround, and
the shifting of production to other factory units. It is
therefore crucial to make a good decision about the
makespan T in Phase I and to be aware of possi-
ble risks of the actual turnaround schedule computed
in Phase II. Such risks are inherent in a turnaround
project because of the many maintenance jobs that
may involve unforeseen repair activities. Thus over-
ambitious values of T will involve a high risk of
exceeding T , whereas values that are too pessimistic
will result in an unnecessary loss of production as
well as possibly higher external resource costs.
To aid the decision makers in choosing a good

makespan T , we have implemented methods for eval-
uating two risk measures that are used in both phases.
These are based on the assumption that the process-
ing times of (some) jobs j are random variables Xj

with (roughly) known probability distribution Pj and
modal value pj , where pj is the deterministic pro-
cessing time resulting from the given mode �rj� pj � of
job j (either at a particular breakpoint of the time-
cost trade-off curve in Phase I or caused by the fixed
mode of the final schedule in Phase II). For computa-
tional reasons that will become obvious below, we also
assume that theXj are discrete random variables. In our
real-world instances, they have up to four values, p1j <
p2j = pj < p3j < p4j , where p1j denotes an early comple-
tion, p2j is the planned processing time, and p3j and p4j
model an increase in processing time because of repair
work and waiting for spare parts plus repair, respec-
tively. From the theoretical point of view, one can eas-
ily imagine more stochastic events, but the restriction
to at most four events seems to be reasonable and
common in practice. More parameters are considered
as unnecessary overhead by our industrial partners,
because this information is hard to specify.
The makespan Cmax is then a function of the ran-

dom processing times Xj and is thus also a random
variable that depends on the joint distribution P of the
job-processing times Xj . Because these are typically
stochastically dependent (often with a positive corre-
lation), an exact calculation of percentiles or other val-
ues of the distribution function of Cmax is not feasible
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because this is #P -complete even for independent pro-
cessing times (see Hagstrom 1988). We therefore com-
pute worst-case measures that are valid for arbitrary
dependencies among jobs.
The first such risk measure is an upper bound +

on the expected tardiness of the makespan, which is
defined as

+�t� �= sup
Q�Qj=Pj

ƐQ�max�Cmax− t�0���

where Q ranges over all joint distributions of the pro-
cessing times whose marginal distributions Qj equal
the given distributions Pj of Xj . Thus +�t� is an
upper bound on the expected time by which Cmax will
exceed the value t as a function of t.
This bound has been extensively investigated by

Meilijson and Nádas (1979) and Weiss (1986). As a
function of t, +�t� is convex decreasing with a slope
of −1 for all t not exceeding a particular value t0 and
can for all t ≥ t0 be computed as

+�t� = min
�x1�����xn�

∑
j∈�

Ɛ�max�Xj − xj�0��

s.t. Cmax�x1� � � � � xn�≤ t �

where Cmax�x1� � � � � xn� is the makespan resulting from
the processing times xj of jobs j .
This minimization problem is the deadline version

of a continuous time-cost trade-off problem in which
the cost of job j as a function of its processing time xj

51,030
6d 23h 50min
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Projektkosten in €
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– – – –

Figure 2 Evaluation of the Risk in Phase I Illustrated by a Snapshot of Our Software Tool in German
Notes. The vertical percentage lines refer to the probability that the corresponding time t is met when the turnaround is carried out with the chosen value T .
In the example, T ≈ 7 days, and the probability of meeting T is only 45%.

is just the expected tardiness Ɛ�max�Xj − xj�0�� of
that job and is thus convex and even piecewise lin-
ear because the random processing times are dis-
crete. These functions Ɛ�max�Xj − xj�0�� are directly
obtained from the values p1j < p2j = pj < p3j < p4j and
their probabilities, and the standard algorithm for lin-
ear time-cost trade-off problems can straightforwardly
be adapted to piecewise linear and convex cost func-
tions. Altogether, this yields a very efficient computa-
tion of +�t� as a function of t.
Meilijson and Nádas (1979) also show that the

bound +�t� is tight in the sense that for every t ≥ t0,
there is a joint distribution Q such that +�t� =
ƐQ�max�Cmax − t�0��. In general, Q may depend
on t, but if the precedence constraints form a series-
parallel partial order (which is the case in our real-life
instances; see §5), then there is such a joint distribu-
tion Q attaining the worst-case bound for all t. More-
over, the distribution function F of Q is then given by
F = 1−+. This implies that

Prob�Cmax ≤ t�≥ F �t�= 1−+�t��

which means that the probability that the makespan
Cmax does not exceed time t is at least the value
1−+�t� for all possible dependencies among jobs. This
probability is exactly the second risk measure that
we compute, and it can be directly obtained from the
function +�t�.
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Altogether, the solution of a continuous time-cost
trade-off problem derived from the stochastic infor-
mation about job-processing times gives us directly
two risk measures: the expected tardiness of exceed-
ing the envisioned or chosen makespan T as +�T � and
the probability of exceeding it as 1− +�T �. Figure 2
shows the use of the second risk measure in Phase I,
where the probabilities of exceeding an envisioned
makespan T are indicated by different colors.

5. Computational Results
In this section we report on our computational results
obtained on the turnaround scheduling algorithm,
that is, the resource-leveling heuristic in §4.2 based
on the project manager’s decision made after the
time-cost trade-off computation described in §4.1. We
tested it on three real-world instances from chem-
ical manufacturing sites and on additional smaller
instances with similar characteristics that we gener-
ated randomly. We evaluate the performance of the
real-world instances by the means of the relative
resource consumption  k, which we introduced as
Equation (1) in §3 as an indicator for how well the
resource type is leveled. For a large class of artificially
generated instances, we can compare the resource
availability cost of our heuristic solution with the cost
of optimal solutions or lower bounds, both obtained
by solving the MIP introduced in §3. All computa-
tions were done on a 64-bit Linux machine equipped
with a 2.66 GHz Intel Core 2 Duo processor with
2 GB of RAM. To solve the integer programs, we used
ILOG CPLEX 11.
The real-world instances consist of about 1,000 jobs,

and in one case, 100,000 jobs. They require roughly
15 different resource types, out of which 8 shall be lev-
eled. The processing times per job are widely spread
between 20 minutes and 2 days. The precedence rela-

Figure 3 Series-Parallel Structure of Precedence Constraints Between Jobs; Part of a Real-World Turnaround Instance

tions between jobs form a series-parallel structure
that is somewhat dominated by parallel chains; see
Figure 3 for a visualization of such a structure for a
part of a real-world input instance. A (slightly dis-
torted) example of such a real-world instance can be
found in the Online Supplement (available at http://
joc.pubs.informs.org/ecompanion.html). The data set
consists of three files with job, calendar, and resource
parameters for one turnaround project. To imitate a
project manager’s decision on the total project dura-
tion (based on Phase I), we compute the time-cost
trade-off curve for a turnaround instance and choose
minimum, medium, and maximum feasible project
durations. This yields three test instances per input
instance to test the resource-leveling heuristic. The
chosen durations are between 4 and 15 days for the
smaller instances.
We compute solutions for the huge real-world

instance in less than 10 minutes, whereas solving the
1,000 job instances takes only a few seconds. The
relative resource consumption  k of the most impor-
tant resource types in these examples lies between
95% and 99%. Other less costly resource types yield
a lower relative resource consumption; see Figures 4
and 5 for a visualization of the resource consumption
of selected resource types before and after the level-
ing. Nevertheless, this is a high degree of resource
utilization, and the precedence constraints between
jobs and resource calendars prohibit a much larger
resource utilization. To quantify the optimality gap,
we consider instances of smaller size for which we
can compute an optimal solution or obtain lower
bounds from solving the MIP.
We generated such additional turnaround instances

by randomly setting the parameters mainly within
the bounds given by the real-world instances. We cre-
ated test sets with 30, 40, 50, and 60 jobs and vari-
able resource allocation of one or two resource units
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Figure 4 Visualization of the Unleveled Resource Consumption for Two Selected Resource Types in a Real-World Project, Aggregated on a
Four-Hour Basis

Note. The resource types are cleaners (on top, 100% = 3 units) and metal workers (bottom, 100% = 22 units), respectively.

per job. We used 10 randomly generated instances
per set. The work volume of any job lies between
6 and 20. This is clearly a deviation from the
real-world data we received, but this simplifi-
cation enables us to compute optimal solutions.
Additionally, we generated instances with six or
seven resource units per job. To compare the results
with the previous test sets, we scaled the work vol-
ume for each job with a factor of 6.5. Each job requires
one out of two resource types that must be leveled
and have an upper bound on the resource capac-
ity of 30 or 40. The resource costs are chosen as in
the real-world instances. The precedence relations are
chosen randomly in such a way that the precedence
graph is again series parallel as in the real-world
instances.
For each of these randomly generated instances, we

determine deadlines (that is, turnaround makespans)
that a manager may choose in the same way as for the
real-world instances. We compute for each instance
the minimum and maximum project duration and

Figure 5 Visualization of the Leveling for Four Selected Resource Types in a Real-World Project, Aggregated on a Four-Hour Basis
Notes. The top two resource types are the same as in Figure 4, i.e., cleaners (3 units) and metal workers (22 units), respectively. The bottom two resource
types correspond to two different cranes (14 tons and 22 tons) that are only used sporadically. Such resource types are excluded in the leveling.

a value in between, which gives three instances for
the resource-leveling heuristic. The total computation
time of our algorithm is less than a second for each
instance. We assess the quality of our solutions by
comparing against CPLEX solutions for the corre-
sponding MIP formulation stated in §3. As mentioned
earlier, the model uses time-indexed variables and is
therefore not applicable to instances of the size as
is typical in practice. To solve our smaller-size test
instances, we bound the computation time for CPLEX
by one hour. If CPLEX does not find a provably opti-
mal solution, then we use the current lower bound on
the optimum value for comparison with the results of
our heuristic. Tables 1 and 2 summarize the computa-
tional results for each of the two classes of instances,
with resource requirements of one to two and six to
seven units per job.
As already mentioned, our heuristic solves all test

instances in less than one second. In contrast, CPLEX
needs for instances with 60 jobs on average nearly
the total given time limit of one hour. The fourth
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Table 1 Comparison of Runtime and Resource Availability Cost (or Lower Bounds) of Optimal Schedules Obtained by CPLEX and Schedules Obtained
by Our Heuristic (Between One and Two Resource Units per Job)

Average Optimal Optimal Gap Max. gap Gap Max. cost
Number Runtime runtime solutions solutions heuristic heuristic heuristic gap heuristic
of jobs heuristic CPLEX CPLEX (%) heuristic (%) vs. opt. (%) vs. opt. (%) vs. LB (%) vs. LB (%)

30 <1 sec 20 sec 100 61 8 33 — —
40 <1 sec 20 sec 100 47 10 38 — —
50 <1 sec 25 sec 100 59 7 29 — —
60 <1 sec 12 min 83 40 9 33 10 33

Table 2 Comparison of Runtime and Resource Availability Cost (or Lower Bounds) of Optimal Schedules Obtained by CPLEX and Schedules Obtained
by Our Heuristic (Between Six and Seven Resource Units per Job)

Average Optimal Optimal Gap Max. gap Gap Max. cost
Number Runtime runtime solutions solutions heuristic heuristic heuristic gap heuristic
of jobs heuristic CPLEX CPLEX (%) heuristic (%) vs. opt. (%) vs. opt. (%) vs. LB (%) vs. LB (%)

30 <1 sec 20 min 68 25 12 48 15 48
40 <1 sec 36 min 43 0 13 24 14 30
50 <1 sec 36 min 41 7 16 33 17 38
60 <1 sec 54 min 10 3 10 19 18 36

Table 3 Comparison of Runtime and Resource Availability Cost (or Lower Bounds) of Optimal Schedules Obtained by CPLEX and Schedules Obtained
by Our Heuristic (Between Two and Four Resource Units per Job)

Average Optimal Optimal Gap Max. gap Gap Max. cost
Number Runtime runtime solutions solutions heuristic heuristic heuristic gap heuristic
of jobs heuristic CPLEX CPLEX (%) heuristic (%) vs. opt. (%) vs. opt. (%) vs. LB (%) vs. LB (%)

30 <1 sec 29 sec 100 43 9 31 — —
40 <1 sec 19 min 73 10 11 57 14 69
50 <1 sec 45 min 15 0 11 17 15 25

column in Tables 1 and 2 reveals that with the increas-
ing the number of jobs, CPLEX computations reach
the given time limit, and thus, the computation pro-
cess is aborted without having found an optimal solu-
tion. This situation occurs, in particular, if we set the
resource allocation to six or seven resource units. In
a few cases, our heuristic actually found an optimal
solution after a few seconds, whereas CPLEX did not
within one hour. The fifth column in Tables 1 and
2 quantifies how often our heuristic yields provable
optimal solutions. For resource allocations between
one and two units, we solve a significant number
of instances to optimality. This changes when the
resource requirements increase to six and seven units.
In those cases, in which a provably optimal solution
is found (by CPLEX), we compare its cost with those
of our heuristic. The sixth column in the tables shows
that we obtain solutions that are close to optimum.
We leave, on average, a gap of about 7% to 10%
and 38% in the worst case; see Table 1. Increasing
the number of resource units yields somewhat worse
results with an average gap of up to 16% and 48%
in the worst case; see Table 2. The last columns in
Tables 1 and 2 compare the results of our heuristic

to the lower bounds obtained by CPLEX. If CPLEX
has solved all instances to optimality, we omit the last
entries because they are equal to the sixth and seventh
columns. We compute the cost gap of our heuristic
to the lower bound over all instances and to those
where CPLEX found an optimal solution. In total, this
does not dramatically increase the average gap, which
shows that our solutions leave a gap of same size to
the lower bounds as to the suboptimal solutions by
CPLEX.
So far we have evaluated our heuristic on instances

with up to two processing alternatives per job. Table 3
shows our computational results on instances where
each job requires two, three, or four resource units
that are given in advance per job. The work volume
per job lies between 20 and 50. The other parame-
ters are equal to those of the instances before. With
increasing numbers of jobs as well as increasing
project durations, the number of optimal solutions
found by CPLEX decreases and thus the number of
proven optimal solutions found by our heuristic solu-
tions also decreases. It turns out that the average opti-
mality gap is again about 10%. The maximum gap has
been 57% for a single instance.
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6. Conclusions and Research
Perspectives

To the best of our knowledge, popular project man-
agement software does not support a time-cost trade-
off related analysis. Resource-leveling packages do
exist but seem to use very simple heuristics. More-
over, they have their limitations in the presence of
working shifts, capacity bounds, or other specialized
constraints such as conflicting job sets.
Motivated by applications in chemical manufac-

turing, we have formulated the shutdown and
turnaround scheduling problem as an integrated
problem that contains various optimization problems
as subproblems, such as the time-cost trade-off prob-
lem, the problem of scheduling with resource capac-
ities and working shifts, and the resource leveling
problem, all of which have been considered individ-
ually previously. We reported on our successful solu-
tion approach within a more comprehensive decision
support tool that additionally provides tools for risk
analysis during the decision process and for the final
schedule. Our optimization algorithm yields near-
optimal solutions in a very short time. We hope that
our work initiates more research on this general and
integrated model to overcome the deficiencies of cur-
rent project management tools.
Another very challenging line of research has come

out of extensive discussions with practitioners about
how to cope with uncertainty in turnaround schedul-
ing. One question addresses the risk inherent in the
whole planning process. So far we have only imple-
mented tools for risk evaluation of given schedules.
We applied techniques to determine an upper bound
on the expected tardiness and the probability of meet-
ing the makespan for a given project schedule. This
allows the project manager to choose a schedule
according to his or her risk affinity. Nevertheless, this
method is only applied after the schedule optimiza-
tion. We expect that an integrated approach that com-
bines risk analysis and scheduling might yield better
decision support for turnaround projects, but this is
currently beyond the optimization methods available
in practice.
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