
JID:TCS AID:11484 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.232; Prn:28/02/2018; 11:03] P.1 (1-15)

Theoretical Computer Science ••• (••••) •••–•••
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Scheduling maintenance jobs in networks

Fidaa Abed a, Lin Chen b, Yann Disser c, Martin Groß d,∗,1, Nicole Megow e,
Julie Meißner f, Alexander T. Richter g, Roman Rischke h

a University of Jeddah, Al-Sharafeyah, Jeddah 23218, Saudi Arabia
b University of Houston, 4800 Calhoun Rd, Houston, TX 77004, USA
c TU Darmstadt, Karolinenpl. 5, 64289 Darmstadt, Germany
d University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
e University of Bremen, Bibliothekstraße 1, 28359 Bremen, Germany
f TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
g TU Braunschweig, Universitätsplatz 2, 38106 Braunschweig, Germany
h TU München, Arcisstraße 21, 80333 München, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 September 2017
Received in revised form 24 January 2018
Accepted 21 February 2018
Available online xxxx

Keywords:
Scheduling
Maintenance
Connectivity
Complexity theory
Approximation algorithm

We investigate the problem of scheduling the maintenance of edges in a network,
motivated by the goal of minimizing outages in transportation or telecommunication
networks. We focus on maintaining connectivity between two nodes over time; for the
special case of path networks, this is related to the problem of minimizing the busy time
of machines.
We show that the problem can be solved in polynomial time in arbitrary networks if
preemption is allowed. If preemption is restricted to integral time points, the problem
is NP-hard and in the non-preemptive case we give strong non-approximability results.
Furthermore, we give tight bounds on the power of preemption, that is, the maximum
ratio of the values of non-preemptive and preemptive optimal solutions.
Interestingly, the preemptive and the non-preemptive problem can be solved efficiently on
paths, whereas we show that mixing both leads to a weakly NP-hard problem that allows
for a simple 2-approximation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Transportation and telecommunication networks are important backbones of modern infrastructure and have been a
major focus of research in combinatorial optimization and other areas. Research on such networks usually concentrates
on optimizing their usage, for example by maximizing throughput or minimizing costs. In the majority of the studied
optimization models it is assumed that the network is permanently available, and our choices only consist in deciding
which parts of the network to use at each point in time.

* Corresponding author.
E-mail addresses: fabed @uj .edu .sa (F. Abed), chenlin198662 @gmail .com (L. Chen), disser @mathematik.tu -darmstadt .de (Y. Disser),

martin .gross @mailbox .org (M. Groß), nicole .megow @uni -bremen .de (N. Megow), jmeiss @math .tu -berlin .de (J. Meißner), a .richter @tu -bs .de (A.T. Richter),
rischke @ma .tum .de (R. Rischke).

1 Present address: RWTH Aachen, Templergraben 55, 52062 Aachen, Germany.
https://doi.org/10.1016/j.tcs.2018.02.020
0304-3975/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2018.02.020
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:fabed@uj.edu.sa
mailto:chenlin198662@gmail.com
mailto:disser@mathematik.tu-darmstadt.de
mailto:martin.gross@mailbox.org
mailto:nicole.megow@uni-bremen.de
mailto:jmeiss@math.tu-berlin.de
mailto:a.richter@tu-bs.de
mailto:rischke@ma.tum.de
https://doi.org/10.1016/j.tcs.2018.02.020

JID:TCS AID:11484 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.232; Prn:28/02/2018; 11:03] P.2 (1-15)

2 F. Abed et al. / Theoretical Computer Science ••• (••••) •••–•••
Practical transportation and telecommunication networks, however, can generally not be used non-stop. Be it due to
wear-and-tear, repairs, or modernizations of the network, there are times when parts of the network are unavailable. We
study how to schedule and coordinate such maintenance in different parts of the network to ensure connectivity.

While network problems and scheduling problems individually are fairly well understood, the combination of both areas
that results from scheduling network maintenance has only recently received some attention [1–5] and is theoretically
hardly understood.

Problem definition. In this paper, we study connectivity problems which are fundamental in this context. In these prob-
lems, we aim to schedule the maintenance of edges in a network in such a way as to preserve connectivity between two
designated vertices. Given a network and maintenance jobs with processing times and feasible time windows, we need
to decide on the temporal allocation of the maintenance jobs. While a maintenance on an edge is performed, the edge
is not available. We distinguish between MINCONNECTIVITY, the problem in which we minimize the total time in which
the network is disconnected, and MAXCONNECTIVITY, the problem in which we maximize the total time in which it is
connected.

In both of these problems, we are given an undirected graph G = (V , E) with two distinguished vertices s+, s− ∈ V .
We assume w.l.o.g. that the graph is simple; we can replace a parallel edge {u, w} by a new node v and two edges
{u, v} , {v, w}. Every edge e ∈ E needs to undergo pe ∈ Z≥0 time units of maintenance within the time window [re, de] with
re, de ∈ Z≥0, where re is called the release date and de is called the deadline of the maintenance job for edge e. An edge
e = {u, v} ∈ E that is maintained at time t , is not available at t in the graph G . We consider preemptive and non-preemptive
maintenance jobs. If a job must be scheduled non-preemptively then, once it is started, it must run until completion without
any interruption. If a job is allowed to be preempted, then its processing can be interrupted at any time and may resume
at any later time without incurring extra cost.

A schedule S for G assigns the maintenance job of every edge e ∈ E to a single time interval (if non-preemptive) or a set
of disjoint time intervals (if preemptive) S(e) := {[a1, b1], . . . , [ak, bk]} with

re ≤ ai ≤ bi ≤ de, for i ∈ [k] and
∑

[a,b]∈S(e)

(b − a) = pe.

If not specified differently, we define T := maxe∈E de as our time horizon. We do not limit the number of simultaneously
maintained edges.

For a given maintenance schedule, we say that the network G is disconnected at time t if there is no path from s+
to s− in G at time t , otherwise we call the network G connected at time t . The goal is to find a maintenance schedule
for the network G so that the total time where G is disconnected is minimized (MINCONNECTIVITY). We also study the
maximization variant of the problem, in which we want to find a schedule that maximizes the total time where G is
connected (MAXCONNECTIVITY).

Our results. For preemptive maintenance jobs, we show that we can solve both problems, MAXCONNECTIVITY and
MINCONNECTIVITY, efficiently in arbitrary networks (Theorem 1). This result crucially requires that we are free to preempt
jobs at arbitrary points in time. Under the restriction that we can preempt jobs only at integral points in time, the problem
becomes NP-hard. More specifically, MAXCONNECTIVITY does not admit a (2 − ε)-approximation algorithm for any ε > 0
in this case, and MINCONNECTIVITY is inapproximable (Theorem 4), unless P = NP. By inapproximable, we mean that it is
NP-complete to decide whether the optimal objective value is zero or positive, leading to unbounded approximation factors.

This is true even for unit-size jobs. This complexity result is interesting and may be surprising, as it is in contrast to
results for standard scheduling problems, without an underlying network. Here, the restriction to integral preemption typi-
cally does not increase the problem complexity when all other input parameters are integral. However, the same question
remains open in a related problem concerning the busy-time in scheduling, studied in [6,7].

For non-preemptive instances, we establish that there is no (c 3
√|E|)-approximation algorithm for MAXCONNECTIVITY

for some constant c > 0 and that MINCONNECTIVITY is inapproximable even on disjoint paths between two nodes s and t ,
unless P = NP (Theorems 5, 6). On the positive side, we provide an (� +1)-approximation algorithm for MAXCONNECTIVITY
in general graphs (Theorem 8), where � is the number of distinct latest start times (deadline minus processing time) for
jobs.

We use the notion power of preemption to capture the benefit of allowing arbitrary job preemption. The power of pre-
emption is a commonly used measure for the impact of preemption in scheduling [8–11]. Other terms used in this context
include price of non-preemption [12], benefit of preemption [13] and gain of preemption [14]. It is defined as the maximum
ratio of the objective values of an optimal non-preemptive and an optimal preemptive solution. We show that the power of
preemption is �(log |E|) for MINCONNECTIVITY on a path (Theorem 9) and unbounded for MAXCONNECTIVITY on a path
(Theorem 12). This is in contrast to other scheduling problems, where the power of preemption is constant, e.g. [9,10].

On paths, we show that mixed instances, which have both preemptive and non-preemptive jobs, are weakly NP-hard
(Theorem 13). This hardness result is of particular interest, as both purely non-preemptive and purely preemptive instances
can be solved efficiently on a path (see Theorem 1 and [15]). Furthermore, we give a simple 2-approximation algorithm for
mixed instances of MINCONNECTIVITY (Theorem 14).

JID:TCS AID:11484 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.232; Prn:28/02/2018; 11:03] P.3 (1-15)

F. Abed et al. / Theoretical Computer Science ••• (••••) •••–••• 3
Related work. The concept of combining scheduling with network problems has been considered by different communities
lately. However, the specific problem of only maintaining connectivity over time between two designated nodes has not
been studied to our knowledge. Boland et al. [1,16,2] study the combination of non-preemptive arc maintenance in a trans-
port network, motivated by annual maintenance planning for the Hunter Valley Coal Chain [17]. Their goal is to schedule
maintenance such that the maximum s-t-flow over time in the network with zero transit times is maximized. They show
strong NP-hardness for their problem and describe various heuristics and IP based methods to address it. Also, they show
in [16] that in their non-preemptive setting, if the input is integer, there is always an optimal solution that starts all jobs
at integer time points. In [1], they consider a variant of their problem, where the number of concurrently performable
maintenances is bounded by a constant.

Their model generalizes ours in two ways – it has capacities and the objective is to maximize the total flow value.
As a consequence of this, their IP-based methods carry over to our setting, but these methods are of course not efficient.
Their hardness results do not carry over, since they rely on the capacities and the different objective. However, our hardness
results – in particular our approximation hardness results – carry over to their setting, illustrating why their IP-based models
are a good approach for some of these problems.

Bley, Karch and D’Andreagiovanni [4] study how to upgrade a telecommunication network to a new technology employ-
ing a bounded number of technicians. Their goal is to minimize the total service disruption caused by downtimes. A major
difference to our problem is that there is a set of given paths that shall be upgraded and a path can only be used if it
is either completely upgraded or not upgraded. They give ILP-based approaches for solving this problem and show strong
NP-hardness for a non-constant number of paths by reduction from the linear arrangement problem.

Nurre et al. [3] consider the problem of restoring arcs in a network after a major disruption, with restoration per time
step being bounded by the available work force. Such network design problems over time have also been considered by
Kalinowski, Matsypura and Savelsbergh [18].

In scheduling, minimizing the busy time refers to minimizing the amount of time for which a machine is used. Such
problems have applications for instance in the context of energy management [19] or fiber management in optical net-
works [5]. They have been studied from the complexity and approximation point of view in [7,5,15,19]. The problem of
minimizing the busy time is equivalent to our problem in the case of a path, because there we have connectivity at a time
point when no edge in the path is maintained, i.e., no machine is busy.

Thus, the results of Khandekar et al. [15] and Chang, Khuller and Mukherjee [7] have direct implications for us. They
show that minimizing busy time can be done efficiently for purely non-preemptive and purely preemptive instances, re-
spectively.

2. Preemptive scheduling

In this section, we consider problem instances where all maintenance jobs can be preempted.

Theorem 1. Both MAXCONNECTIVITY and MINCONNECTIVITY with preemptive jobs can be solved optimally in polynomial time on
arbitrary graphs.

Proof. We establish a linear program (LP) for MAXCONNECTIVITY. Let T P = {0} ∪ {re, de : e ∈ E} = {t0, t1, . . . , tk} be the set
of all relevant time points with t0 < t1 < · · · < tk . We define Ii := [ti−1, ti] and wi := |Ii | to be the length of interval Ii for
i = 1, . . . , k.

In our linear program we model connectivity during interval Ii by an (s+, s−)-flow x(i) , i ∈ {1, . . . , k}. To do so, we add
for every undirected edge e = {u, v} two directed arcs (u, v) and (v, u). Let A be the resulting arc set. With each edge/arc
we associate a capacity variable y(i)

e , which represents the fraction of availability of edge e in interval Ii . Hence, 1 − y(i)
e

gives the relative amount of time spent on the maintenance of edge e in Ii . Additionally, the variable f i expresses the
fraction of availability for interval Ii .

max
k∑

i=1

wi · f i (1)

s.t.
∑

u:(v,u)∈A

x(i)
(v,u) −

∑
u:(u,v)∈A

x(i)
(u,v) =

⎧⎪⎪⎨
⎪⎪⎩

f i ∀ i ∈ [k], v = s+,

0 ∀ i ∈ [k], v ∈ V \ {s+, s−},
− f i ∀ i ∈ [k], v = s−,

(2)

∑
i:Ii⊆[re,de]

(1 − y(i)
e)wi ≥ pe ∀ e ∈ E, (3)

x(i)
, x(i) ≤ y(i) ∀ i ∈ [k], {u, v} ∈ E, (4)
(u,v) (v,u) {u,v}

JID:TCS AID:11484 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.232; Prn:28/02/2018; 11:03] P.4 (1-15)

4 F. Abed et al. / Theoretical Computer Science ••• (••••) •••–•••
f i ≤ 1 ∀ i ∈ [k], (5)

x(i)
(u,v), x(i)

(v,u), y(i)
{u,v} ∈ [0,1] ∀ i ∈ [k], {u, v} ∈ E. (6)

Notice that the LP is polynomial in the input size, since k ≤ 2|E|. We show in Lemma 2 that this LP is a relaxation of pre-
emptive MAXCONNECTIVITY on general graphs and in Lemma 3 that any optimal solution to it can be turned into a feasible
schedule with the same objective function value in polynomial time, which proves the claim for MAXCONNECTIVITY. For
MINCONNECTIVITY, notice that any solution that maximizes the time in which s and t are connected also minimizes the
time in which s and t are disconnected – thus, we can use the above LP there as well. �

Next, we need to prove the two lemmas that we used in the proof of Theorem 1. We begin by showing that the LP is
indeed a relaxation of our problem.

Lemma 2. The given LP is a relaxation of preemptive MAXCONNECTIVITY on general graphs.

Proof. Given a feasible maintenance schedule, consider an arbitrary interval Ii , i ∈ {1, . . . , k}, and let [ai
1, b

i
1] ∪̇ . . . ∪̇

[ai
mi

, bi
mi

] ⊆ Ii be all intervals where s+ and s− are connected in interval Ii . We set f i = ∑mi
�=1(b

i
� − ai

�)/wi ≤ 1 and set
y(i)

e ∈ [0, 1] to the fraction of time where edge e is not maintained in interval Ii . Note that (3) is automatically fulfilled,
since we consider a feasible schedule. It is left to construct a feasible flow x(i) for the fixed variables f i and y(i) for all
i = 1, . . . , k.

Whenever the given schedule admits connectivity we can send one unit of flow from s+ to s− along some directed path
in G . Moreover, in intervals where the set of processed edges does not change we can use the same path for sending the
flow. Let [a, b] ⊆ Ii be an interval where the set of processed edges does not change and in which we have connectivity.
Let Ci be the collection of all such intervals in Ii . Then, we send a flow x(i)

[a,b] from s+ to s− along any path of total value
(b − a)/wi using only arcs for which the corresponding edge is not processed in [a, b]. The flow x(i) = ∑

[a,b]∈Ci
x(i)
[a,b] , which

is a sum of vectors, gives the desired flow. The constructed flow x(i) respects the flow conservation (2) and non-negativity
constraints (6), uses no arc more than the corresponding y(i)

e , since flow x(i) is driven by the schedule. �
Lemma 3. Any feasible LP solution can be turned into a feasible maintenance schedule at no loss in the objective function value in
polynomial time.

Proof. Let (x, y, f) be a feasible solution of the given LP. Let P i := (P i
1, . . . , P

i
λi

) be a path decomposition [20] of the
(s+, s−)-flow x(i) for an arbitrary interval Ii := [ai, bi], i ∈ {1, . . . , k}, after deleting all flow from possible circulations. Fur-
thermore, let x(P i

�) be the value of the (s+, s−)-flow x(i) sent along the directed path P i
� . For each arc a ∈ A we have that ∑

�∈[λi]:a∈P i
�

x(P i
�) = x(i)

a by the definition of P i . Hence, we get
∑

�∈[λi] x(P i
�) = f i ≤ 1 by using (5). We now divide the in-

terval Ii into disjoint subintervals to allocate connectivity time for each path in our path decomposition. More precisely, we
do not maintain any arc (u, v) (resp. edge {u, v}) contained in P i

� , � = 1, . . . , λi , in the time interval[
ai +

�−1∑
m=1

wi · x(P i
m),ai +

�∑
m=1

wi · x(P i
m)

]
of length wi · x(P i

�). (7)

Inequality (4) and
∑

�∈[λi]:a∈P i
�

x(P i
�) = x(i)

a thereby ensure that by now the total time where edge e does not undergo

maintenance in interval Ii equals at most wi · y(i)
e time units. By Inequality (3), we can thus distribute the processing time

of the job for edge e among the remaining slots of all intervals Ii , i = 1, . . . , k. For instance, we could greedily process
the job for edge e as early as possible in available intervals. Note that arbitrary preemption of the processing is allowed.
By construction, we have connectivity on path P i

� , � = 1, . . . , λi , for at least wi · x(P i
�) time units in interval Ii . Thus, the

constructed schedule has total connectivity time of at least
∑k

i=1 wi
∑λi

�=1 x(P i
�) =

∑k
i=1 wi · f i . Since the path decomposition

can be computed in polynomial-time and the resulting number of paths is bounded by the number of edges [20], we can
obtain the feasible schedule in polynomial-time. �

For unit-size jobs we can simplify the given LP by restricting to the first |E| slots within every interval Ii . This, in turn,
allows to consider intervals of unit-size, i.e., we have wi = 1 for all intervals Ii , which affects constraint (3). However, one
can show that the constraint matrix of this LP is generally not totally unimodular. We illustrate the behavior of the LP
with the help of the following exemplary instance in Fig. 1, in which all edges have unit-size jobs associated and the label
of an edge e represents (re, de). It is easy to verify that a schedule that preempts jobs only at integral time points, has
maximum connectivity time of one. However, the following schedule with arbitrary preemption has connectivity time of
two. We process {s+, v2} in [0, 0.5] ∪[1, 1.5], {s+, v3} in [0.5, 1] ∪[1.5, 2], {v4, s−} in [0, 0.5] ∪[1.5, 2], {v5, s−} in [0.5, 1.5],
and the other edges are fixed by their time window. This instance shows that the integrality gap of the LP is at least two.

JID:TCS AID:11484 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.232; Prn:28/02/2018; 11:03] P.5 (1-15)

F. Abed et al. / Theoretical Computer Science ••• (••••) •••–••• 5
Fig. 1. Example for the difference between arbitrary preemption and preemption only at integral time points.

Fig. 2. High-level view of the construction for Theorem 5.

The statement of Theorem 1 crucially relies on the fact that we may preempt jobs arbitrarily. However, if preemption is
only possible at integral time points, the problem becomes NP-hard even for unit-size jobs. This follows from the proof of
Theorem 5 for t1 = 0, t2 = 1, and T = 2.

Theorem 4. MAXCONNECTIVITY with preemption only at integral time points is NP-hard and does not admit a (2 −ε)-approximation
algorithm for any ε > 0, unless P = NP. Furthermore, MINCONNECTIVITY with preemption only at integral time points is inapprox-
imable.

3. Non-preemptive scheduling

We consider problem instances in which no job can be preempted. We show that there is no (c 3
√|E|)-approximation

algorithm for MAXCONNECTIVITY for some c > 0. We also show that MINCONNECTIVITY is inapproximable, unless P = NP.
Furthermore, we give an (� + 1)-approximation algorithm, where � := | {de − pe | e ∈ E} | is the number of distinct latest
start times for jobs.

To show the strong hardness of approximation for MAXCONNECTIVITY, we begin with a weaker result which provides
us with a crucial gadget.

Theorem 5. Non-preemptive MAXCONNECTIVITY does not admit a (2 −ε)-approximation algorithm, for ε > 0, and non-preemptive
MINCONNECTIVITY is inapproximable, unless P = NP. This holds even for unit-size jobs.

Proof. We show that the existence of a (2 − ε)-approximation algorithm for non-preemptive MAXCONNECTIVITY allows to
distinguish between YES- and NO-instances of 3SAT in polynomial time. Given an instance of 3SAT consisting of m clauses
C1, C2, . . . , Cm each of exactly three variables in X = {x1, x2, . . . , xn}, we construct the following instance of non-preemptive
MAXCONNECTIVITY. We pick two arbitrary but distinct time points t1 + 1 ≤ t2 and a polynomially bounded time horizon
T ≥ t2 + 1. We construct our instance such that connectivity is impossible outside [t1, t1 + 1] and [t2, t2 + 1]. For this, s+ is
followed by a path P from s+ to a vertex s′ composed of three edges that disconnect s+ from s− in the time intervals
[0, t1], [t1 + 1, t2], and [t2 + 1, T]. These edges e have pe = de − re . The path P will be the only path from s+ to s′ , and all
paths from s+ to nodes not in P will start with the path P .

Furthermore, we construct the network such that the total connectivity time is greater than one if and only if the
3SAT-instance is a YES-instance. And we show that if the total connectivity time is greater than one, then there is a
schedule with maximum total connectivity time of two. The high-level structure of the graph we will be creating can be
found in Fig. 2, with an expanded version following later in Fig. 3.

Let Y (xi) be the set of clauses containing the literal xi and Z(xi) be the set of clauses containing the literal ¬xi , and set
ki = 2|Y (xi)| and �i = 2|Z(xi)|. We define the following node sets

• V 1 := {y1
i , . . . , y

ki
i | i = 1, . . . , n},

• V 2 := {z1
i , . . . , z

�i
i | i = 1, . . . , n},

• V 3 := {cr | r = 1, . . . , m + 1},

JID:TCS AID:11484 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.232; Prn:28/02/2018; 11:03] P.6 (1-15)

6 F. Abed et al. / Theoretical Computer Science ••• (••••) •••–•••
Fig. 3. Schematic representation of the gadget for variable xi , which appears negated in clause Cr and positive in clause Cr+2 among others.

• V 4 := {vi | i = 1, . . . , n + 1}
• and set V = ⋃4

j=1 V j ∪ {v : v ∈ P } ∪ {s−}.

We introduce three edge types

• E1 := {e ∈ E : re = t1, de = t2 + 1, pe = t2 − t1},
• E2 := {e ∈ E : re = t1, de = t1 + 1, pe = 1},
• and E3 := {e ∈ E : re = t2, de = t2 + 1, pe = 1}.

The graph G = (V , E) consists of variable gadgets, shown in Fig. 3, to which we connect the clause nodes cr ,
r = 1, . . . , m + 1. We define the following edge sets for the variable gadgets, namely,

• E1 := {{s′, v1}, {vn+1, s−}} of type E2,
• E2 := {{vi, y1

i }, {vi, z1
i }, {yki

i , vi+1}, {z�i
i , vi+1} : i = 1, . . . , n} of type E2,

• E3 := {{yq
i , y

q+1
i } : i = 1, . . . , n; q = 1, 3, . . . , ki − 3, ki − 1} of type E1,

• E4 := {{zq
i , z

q+1
i } : i = 1, . . . , n; q = 1, 3, . . . , �i − 3, �i − 1} of type E1,

• E5 := {{yq
i , y

q+1
i } : i = 1, . . . , n; q = 2, 4, . . . , ki − 4, ki − 2} of type E2,

• and E6 := {{zq
i , z

q+1
i } : i = 1, . . . , n; q = 2, 4, . . . , �i − 4, �i − 2} of type E2.

Notice that a variable xi may only appear positive (�i = 0) or only negative (ki = 0) in our set of clauses. In this case, we
also have an edge of type E2 connecting vi and vi+1 besides the construction for the negative (z nodes) or positive part
(y nodes). Finally, we add edges to connect the clause nodes to the graph. If some positive literal xi appears in clause Cr

and Cr is the q-th clause with positive xi , we add the edges {cr, y
2q−1
i } and {y2q

i , cr+1} both of type E3. Conversely, if some
xi appears negated in Cr and Cr is the q-th clause with ¬xi , we add the edges {cr , z

2q−1
i } and {z2q

i , cr+1} both of type E3.
We also connect c1 and cm+1 to the graph by adding {s′, c1} and {cm+1, s−} of type E3. We define E to be the union of all
introduced edges: E := ⋃6

i=1 Ei ∪ { e | e ∈ P }. Observe that the network G has O (n + m) nodes and edges.
We call an (s+, s−)-path that contains no node from V 3 a variable path and an (s+, s−)-path with no node from V 4 a

clause path. An (s+, s−)-path containing edges of type E2 and E3 does not connect s+ with s− in [t1, t1 + 1] or in [t2, t2 + 1].
Therefore, all paths other than variable paths and relevant clause paths are irrelevant for the connectivity of s+ with s− .

When maintaining all edges of type E1 in [t1, t2], we have connectivity in [t2, t2 + 1] exactly on all variable paths.
Conversely, maintaining all edges of type E1 in [t1 + 1, t2 + 1] yields connectivity in [t1, t1 + 1] exactly on all relevant
clause paths. On the other hand, any clause path can connect s+ with s− only in [t1, t1 + 1] and any variable path only
in [t2, t2 + 1]. We now claim that there is a schedule with total connectivity time greater than one if and only if the
3SAT-instance is a YES-instance.

Let S be a schedule with total connectivity time greater than one. Then there is a variable path P v with positive connec-
tivity time in [t2, t2 + 1] and a clause path P c with positive connectivity time in [t1, t1 + 1]. As the total connectivity time
is greater than one, P c cannot walk through both the positive part (y nodes) and the negative part (z nodes) of the gadget
for any variable xi . This allows to assume w.l.o.g. that P v and P c are disjoint between s′ and s− . Say P v and P c share an
edge on the negative part (z nodes) of the gadget for variable xi . Then we can redirect the variable path P v to the positive
part (y nodes) without decreasing the total connectivity time. The same works if they share an edge on the positive part.

Now set xi to FALSE if P v uses the nodes y1
i , . . . , y

ki
i , that is the upper part of the variable gadget, and to TRUE

otherwise. With this setting, whenever P c uses edges of a variable gadget, e.g. the sequence cr , z
2q−1
i , z2q

i , cr+1 for some
r, q, disjointness of P v and P c implies that clause Cr is satisfied with the truth assignment of variable xi . Since every node

JID:TCS AID:11484 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.232; Prn:28/02/2018; 11:03] P.7 (1-15)

F. Abed et al. / Theoretical Computer Science ••• (••••) •••–••• 7
Fig. 4. Schematic representation of the network of 3SAT-gates.

pair cr, cr+1 is only connected with paths passing through variable gadgets, and at least one of them belongs to P c we
conclude that every clause Cr is satisfied.

Consider a satisfying truth assignment. We define a schedule that admits a variable path P v with connectivity in [t2, t2 +
1]. This path P v uses the upper part (yi -part) if xi is set to FALSE and the lower part (zi -part) if xi is set to TRUE. That
is, we maintain all edges of type E1 on the upper path (yi -path) of the variable gadget for xi in [t1, t2] if xi is FALSE and
in [t1 + 1, t2 + 1] if xi is TRUE. Conversely, edges of type E1 on the lower path (zi -path) of the variable gadget for xi are
maintained in [t1, t2] if xi is TRUE and in [t1 + 1, t2 + 1] if xi is FALSE. This implies for the part of the gadget for xi that is
not used by P v that the corresponding edges of type E1 are scheduled to allow connectivity during [t1, t1 + 1]. These edges
can be used in a clause path to connect node cr with cr+1 for some clauses Cr that is satisfied by the truth assignment
of xi . Since all clauses are satisfied by some variable xi there exists a clause path P c admitting connectivity in [t1, t1 + 1].
Therefore, the constructed schedule allows connectivity during both intervals [t1, t1 + 1] and [t2, t2 + 1].

To show the inapproximability of MINCONNECTIVITY, we reduce 3SAT to this problem. We construct an instance of
MINCONNECTIVITY exactly the same way as we did above for MAXCONNECTIVITY and set t1 = 0, t2 = 1, and T = 2. By
definition of the jobs, this results in an instance with only unit-sized jobs. As we discussed above, YES-instances of 3SAT
result in a MAXCONNECTIVITY instance with an objective value of 2. For T = 2, that means we have connectivity at all
time points, and therefore an objective value of 0 for MINCONNECTIVITY. NO-instances of 3SAT on the other result in
MAXCONNECTIVITY instance with an objective value of 1 – for T = 2, this results in MINCONNECTIVITY objective value
of 1 as well. Due to the gap between 1 and 0, any approximation algorithm that outputs a solution within a factor of the
optimum solution needs to decide 3SAT. �

We reuse the construction in the proof of Theorem 5 repeatedly to obtain the following improved lower bound.

Theorem 6. Unless P = NP, there is no (c 3
√|E|)-approximation algorithm for non-preemptive MAXCONNECTIVITY, for some con-

stant c > 0.

Proof. We reuse the construction in the proof of Theorem 5 to construct a network that has maximum connectivity time n
if the given 3SAT instance is a YES-instance and maximum connectivity time 1 otherwise. This implies that there cannot be
an (n − ε)-approximation algorithm for non-preemptive MAXCONNECTIVITY, unless P = NP. Here, n is again the number of
variables in the given 3SAT instance. Note that the construction in the proof of Theorem 5 has �(n) maintenance jobs and
thus there exists a constant c1 > 0 such that |E| ≤ c1 · n. In this proof, we will introduce �(n2) copies of the construction
and thus |E| ≤ c2 · n3 for some c2 > 0, which gives that n ≥ c3

3
√|E| for some c3 > 0. This gives the statement.

For the construction, we use n2 − n copies of the 3SAT-network from the proof of Theorem 5, where each one uses
different (t1, t2)-combinations with t1, t2 ∈ {0, . . . , n − 1} and t1 �= t2. We use these copies as 3SAT-gates and mutually
connect them as depicted in Fig. 4: gadget (i, j) has incoming connections from gadgets (i, j −1) and (i −1, j) and outgoing
connections to gadgets (i + 1, j) and (i, j + 1). Exceptions to this are gadgets horizontally or vertically adjacent to the main
diagonal – a gadget (i − 1, i) has a connection to gadget (i, i + 1) instead of (i, i) and a gadget (i, i − 1) has a connection to
gadget (i + 1, i) instead of (i, i). Furthermore, the first and last column has connections to s+ and s− instead of connections
to gadgets (−1, ·) or (n, ·), respectively, and gadgets (i, n − 1) in the last row have a connection to the first gadget of the

JID:TCS AID:11484 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.232; Prn:28/02/2018; 11:03] P.8 (1-15)

8 F. Abed et al. / Theoretical Computer Science ••• (••••) •••–•••
next column (i, 0) instead of a connection to a non-existing gadget (i, n). Recall that for one such 3SAT-network we have
the freedom of choosing the intervals [t1, t1 + 1] and [t2, t2 + 1], which are relevant for connectivity. This choice now differs
for every 3SAT-gate.

Think of the construction as an (n × n)-matrix M with an empty diagonal. Entry (i, j), i, j ∈ {0, . . . , n − 1}, in M cor-
responds to a 3SAT-gate in that variable paths only exist in time slot [i, i + 1] and relevant clause paths exist only in
[j, j + 1]. This is enforced by the edges of type E2, which prevent variable paths in [j, j + 1], and edges of type E3,
which prevent relevant clause paths in [i, i + 1]. Edges between the s+-copy and s′-copy of the 3SAT-gate(i, j) prevent
connectivity outside of [i, i + 1] and [j, j + 1]. Note that now E1 := {e ∈ E : re = i, de = j + 1, pe = j − i} if i < j, and
E1 := {e ∈ E : re = j, de = i + 1, pe = i − j} if i > j.

The s+-copy of the 3SAT-gate(i, j) is connected to two paths, where one of them allows connectivity only during [i, i +1]
and the other one only during [j, j + 1]. The same is done for the s−-copy of the 3SAT-gate(i, j). In Fig. 4, this is illustrated
by labels on the paths. A label i ∈ {0, . . . , n − 1} means, that this path allows connectivity only during [i, i + 1]. The upper
path connected to a 3SAT-gate specifies the time slot, where variable paths may exist, and the lower path specifies the time
slot, where relevant clause paths may exist. When following the path with label k ∈ {0, . . . , n − 1}, we pass the gadgets in
column j = 0, . . . , k − 1 on the lower path having j on the upper path. In column k, we walk through all gadgets on the
upper path and then we proceed with column j = k + 1, . . . , n − 1 on the lower path having j again on the upper path.
Eventually, we connect the 3SAT-gate(n − 1, k) to the vertex s− .

Note that within 3SAT-gate(i, j) we have connectivity during [i, i + 1] and [j, j + 1] if and only if the corresponding
3SAT-instance is a YES-instance. Also notice that we can assume due to [16] that all jobs start at integral times, which
allows us to ignore schedules with fractional job starting times and therefore fractional connectivity within a time in-
terval [i, i + 1]. Now, if the 3SAT-instance is a YES-instance, there is a global schedule such that its restriction to every
3SAT-gate(i, j) allows connectivity during both intervals. Thus for each label k ∈ {0, . . . , n − 1} there exists a path with this
label that has connectivity during [k, k + 1]. This implies that the maximum connectivity time is n.

Conversely, suppose there exists a global schedule with connectivity during [i, i + 1] and [j, j + 1] for some i �= j. Then
there must exist two paths P1, P2 from s+ to s− with two distinct labels i and j, each realizing connectivity during
one of both intervals. By construction they walk through the 3SAT-gate(i, j). This implies by the proof of Theorem 5,
that the global schedule restricted to this gate corresponds to a satisfying truth assignment for the 3SAT-instance. That
is, the 3SAT-instance is a YES-instance. With the previous observation, it follows that an optimal schedule has maximum
connectivity time of n. �

The results above hold for general graph classes, but even for graphs as simple as disjoint paths between s and t , the
problem remains strongly NP-hard.

Theorem 7. Non-preemptive MAXCONNECTIVITY is strongly NP-hard, and non-preemptive MINCONNECTIVITY is inapproximable
even if the given graph consists only of disjoint paths between s and t.

Proof. We prove this result by reduction from the strongly NP-complete 3SAT problem.

3SAT
Input: Clauses C1, . . . , Cm of exactly three variables in x1, . . . , xn .
Problem: Is there a truth assignment to the variables in x1, . . . , xn that satisfies all clauses?

We construct a network with 2n paths from s+ to s− , two for each variable of the 3SAT instance. Let Pi and P̄ i denote
the two paths for variable xi . We will introduce several maintenance jobs for each path, understanding that each new job
is associated with a different edge of the path. Since the ordering of these edges does not matter, we will directly associate
each job with a path without explicitly specifying the respective edge of the job. The network will allow a schedule that
maintains connectivity at all times if and only if the 3SAT instance is satisfiable.

For convenience, assume that n ≥ m, otherwise we introduce additional dummy variables. We define a time horizon T =
8n that we subdivide into five intervals A = [0, 2n), B = [2n, 3n), C = [3n, 5n), D = [5n, 6n), E = [6n, 8n]. We will use these
intervals now when defining jobs.

Jobs representing variables. For each variable xi , we define a job each on paths Pi and P̄ i with the time window [0, T]
and processing time 3n. We will ensure that neither job is scheduled to cover the time interval C entirely in any feasible
schedule for the connectivity problem. This implies that a variable job either covers B or D without intersecting the other.
The job on Pi (resp. P̄ i) covering B will correspond to the literal xi (resp. x̄i) being set to TRUE. We will of course ensure
that not both literals can be set to TRUE simultaneously, but we will allow both to be FALSE, which simply means that the
truth assignment remains satisfying, no matter how the variable is set.

Jobs needed to translate schedules into variable assignments. In the following, we introduce blocking jobs that all have a time
window of unit length and unit processing time. In this way, introducing a blocking job at time t simply renders the

JID:TCS AID:11484 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.232; Prn:28/02/2018; 11:03] P.9 (1-15)

F. Abed et al. / Theoretical Computer Science ••• (••••) •••–••• 9
Fig. 5. The paths Pi , P̄ i for variable xi . The axis marks the times from 0 to 8n.

corresponding path unusable during the time interval [t, t + 1). To ensure that the variable jobs for variable xi do not
cover C completely, we add a blocking job at time ti = 3n + 2(i − 1) to all paths except Pi and a blocking job at time t′

i =
3n + 2(i − 1) + 1 to all paths except P̄ i . The first job forces the variable job for the literal xi not to cover C completely, since
otherwise connectedness is interrupted during the time interval [ti, t′

i). The second blocking job accomplishes the same for
the literal x̄i . Note that the blocking jobs for each literal occupy a unique part of the time window C .

Jobs preventing variables from being 0 and 1 at the same time. In order to force at most one literal of each variable xi to be set
to TRUE, we introduce a blocking job at time t′′

i = 2n + (i − 1) on all paths except Pi and P̄ i . These blocking jobs ensure
that either path Pi or P̄ i must be free during time [t′′

i , t′′
i + 1), which means not both variable jobs may be scheduled to

cover B (recall each variable job either covers B or D without intersecting the other). Again, the blocking jobs for each
variable occupy a unique part of the time window B .

Jobs enforcing that at least one literal of each clause is true. For each clause C j we introduce a blocking job at time 5n + j on
each path except the three paths that correspond to literals in C j . Fig. 5 shows this construction for variable xi and paths
Pi, P̄ i .

These blocking jobs force that at least one of the literals of the clause has to be set to TRUE, i.e., be scheduled to
overlap B instead of D , otherwise connectivity is interrupted during time [5n + j, 5n + j + 1). Note again that the blocking
jobs for each clause occupy a unique part of the time window D .

It is now easy to verify that each satisfying truth assignment leads to a feasible schedule without disconnectedness for
the connectivity problem and vice versa.

We can use this instance construction for both versions of the problem. On the one hand, we have that YES-instances of
3SAT result in instances with an objective value of T and 0 for MAXCONNECTIVITY and MINCONNECTIVITY, respectively,
and on the other hand we have that NO-instances of 3SAT result in instances with a MAXCONNECTIVITY objective value
< T and a MINCONNECTIVITY objective value > 0. This gives us the strong NP-hardness for MAXCONNECTIVITY, and the
inapproximability result for MINCONNECTIVITY since the optimal objective value is 0 here, similar to Theorem 5. �

We give an algorithm that computes an (� + 1)-approximation for non-preemptive MAXCONNECTIVITY, where � ≤ |E|
is the number of different time points de − pe, e ∈ E . The basic idea is that we consider a set of � + 1 feasible maintenance
schedules, whose total time of connectivity upper bounds the maximum total connectivity time of a single schedule. Then
the schedule with maximum connectivity time among our set of � + 1 schedules is an (� + 1)-approximation.

The schedules we consider start every job either immediately at its release date, or at the latest possible time. In the
latter case it finishes exactly at the deadline. More precisely, for a fixed time point t , we start the maintenance of all
edges e ∈ E with de − pe ≥ t at their latest possible start time de − pe . All other edges start maintenance at their release
date re . This yields at most � + 1 ≤ |E| + 1 different schedules St , as for increasing t , each time point where de − pe is
passed for some edge e defines a new schedule. Algorithm 1 formally describes this procedure, where E(t) := {e ∈ E :
e is not maintained at t}.

Algorithm 1 Approx. algorithm for non-preemptive MAXCONNECTIVITY.
1: Let t1 < · · · < t� be all different time points de − pe, e ∈ E , t0 = 0 and t�+1 = T .
2: Let Si be the schedule, where all edges e with de − pe < ti start maintenance at re and all other edges at de − pe , i = 1, . . . , � + 1.
3: For each Si , initialize total connectivity time c(ti) ← 0, i = 1, . . . , � + 1.
4: for i = 1 to � + 1 do
5: Partition the interval [ti−1, ti] into subintervals such that each time point re, re + pe, de , e ∈ E , in this interval defines a subinterval bound.
6: for all subintervals [a, b] ⊆ [ti−1, ti] do
7: if (V , E(1/2 · (a + b))) contains an (s+, s−)-path for Si then
8: Increase c(ti) by b − a.
9: return Schedule Si for which c(ti), i = 1, . . . , � + 1, is maximized.

Algorithm 1 considers finitely many intervals, as all (sub-)interval bounds are defined by a time point re, re + pe, de − pe
or de of some e ∈ E . As we can check the network for (s+, s−)-connectivity in polynomial time, and the algorithm does this
for each (sub-)interval, Algorithm 1 runs in polynomial time.

JID:TCS AID:11484 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.232; Prn:28/02/2018; 11:03] P.10 (1-15)

10 F. Abed et al. / Theoretical Computer Science ••• (••••) •••–•••
Fig. 6. A sketch of the splitting procedure and the reserved intervals.

Theorem 8. Algorithm 1 is an (� + 1)-approximation algorithm for non-preemptive MAXCONNECTIVITY on general graphs, with
� ≤ |E| being the number of different time points de − pe, e ∈ E.

Proof. By construction, all schedules Si , i = 1, . . . , � + 1, are feasible and the solution returned has a connectivity time of
maxi=1,...,�+1 c(ti), with c(ti) being the connectivity time of schedule Si .

The schedule Si , i = 1, . . . , � + 1 is chosen in such a way that the connected time in the interval [ti−1, ti] is maximized.
To see this, we need to consider two types of jobs. First, all jobs on edges e ∈ E with de − pe ≥ ti can be scheduled outside
of [ti−1, ti], which is definitely a correct choice in order to maximize the connectivity time in [ti−1, ti]. Second, for all edges
e ∈ E with de − pe < ti , we know due to the definition of ti−1 that re ≤ de − pe ≤ ti−1. Thus, scheduling these jobs at re

guarantees the least reduction in connectivity time in [ti−1, ti]. More precisely, this scheduling disrupts connectivity in the
interval [ti−1, re + pe] if ti−1 ≤ re + pe , and otherwise not at all. However, all other feasible schedulings must also disrupt
connectivity in this interval – scheduling the job earlier than re is not possible, and neither is scheduling the job later than
de − pe ≤ ti−1. Thus, schedule Si has the maximal connectivity time in [ti−1, ti].

Since the intervals [ti−1, ti], i = 1, . . . , � + 1 partition the complete time window [0, T], this allows us to bound the value
of the optimal solution OPT by

OPT ≤
�+1∑
i=1

c(ti) ≤ (� + 1) max
i=1,...,�+1

c(ti) = (� + 1)ALG (8)

with ALG being the value of a solution returned by Algorithm 1. This gives us an approximation guarantee of � + 1 and
completes our proof. �
4. Power of preemption

We first focus on MINCONNECTIVITY on a path and analyze how much we can gain by allowing preemption. First, we
show that there is an algorithm that computes a non-preemptive schedule whose value is bounded by O (log |E|) times
the value of an optimal preemptive schedule. Second, we argue that one cannot gain more than a factor of �(log |E|) by
allowing preemption.

Theorem 9. The power of preemption is �(log |E|) for MINCONNECTIVITY on a path.

Proof. Observe that if at least one edge of a path is maintained at time t , then the whole path is disconnected at t . We
give an algorithm for MINCONNECTIVITY on a path that constructs a non-preemptive schedule with cost at most O (log |E|)
times the cost of an optimal preemptive schedule.

We first compute an optimal preemptive schedule. This can be done in polynomial time by Theorem 1. Let xt be a
variable that is 1 if there exists a job j that is processed at time t and 0 otherwise. We shall refer to x also as the
maintenance profile. Furthermore, let a := ∫ T

0 xt dt be the active time, i.e., the total time of maintenance. Then we apply the
following splitting procedure. We compute the time point t̄ where half of the maintenance is done, i.e.,

∫ t̄
0 xt dt = a/2. Let

E(t) := {e ∈ E | re ≤ t ∧ de ≥ t} and pmax := maxe∈E(t) pe . We reserve the interval
[
t̄ − pmax, t̄ + pmax

]
for the maintenance

of the jobs in E(t̄), although we might not need the whole interval. We schedule each job in E(t̄) around t̄ so that the
processing time before and after t̄ is the same. If the release date (deadline) of a job does not allow this, then we start
(complete) the job at its release date (deadline). Then we mark the jobs in E(t̄) as scheduled and delete them from the
preemptive schedule (Fig. 6).

This splitting procedure splits the whole problem into two separate instances E1 := {e ∈ E | de < t̄} and E2 := {e ∈ E |
re > t̄}. Note that in each of these sub-instances the total active time in the preemptive schedule is at most a/2. We apply
the splitting procedure to both sub-instances and follow the recursive structure of the splitting procedure until all jobs are
scheduled. �
Lemma 10. For MINCONNECTIVITY on a path, the given algorithm constructs a non-preemptive schedule with cost O (log |E|) times
the cost of an optimal preemptive schedule.

Proof. The progression of the algorithm can be described by a binary tree in which a node corresponds to a partial schedule
generated by the splitting procedure for a subset of the job and edge set E . The root node corresponds to the partial
schedule for E(t̄) and the (possibly) two children of the root correspond to the partial schedules generated by the splitting

JID:TCS AID:11484 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.232; Prn:28/02/2018; 11:03] P.11 (1-15)

F. Abed et al. / Theoretical Computer Science ••• (••••) •••–••• 11
Fig. 7. A rough sketch of the instance for 3 levels.

Fig. 8. Example for an unbounded power of preemption.

procedure for the two subproblems with initial job sets E1 and E2. We can cut a branch if the initial set of jobs is empty in
the corresponding subproblem. We associate with every node v of this tree B two values (sv , av) where sv is the number
of scheduled jobs in the subproblem corresponding to v and av is the amount of maintenance time spent for the scheduled
jobs.

The binary tree B has the following properties. First, sv ≥ 1 holds for all v ∈ B , because the preemptive schedule pro-
cesses some job at the midpoint t̄v which means that there must be a job e ∈ E with re ≤ t̄v ∧ de ≥ t̄v . This observation
implies that the tree B can have at most |E| nodes and since we want to bound the worst total cost we can assume w.l.o.g.
that B has exactly |E| nodes. Second,

∑
v∈B av = ∫ T

0 yt dt where yt is the maintenance profile of the non-preemptive
solution.

The cost av of the root node (level-0 node) is bounded by 2pmax ≤ 2a. The cost of each level-1 node is bounded by
2 · a/2 = a, so the total cost on level 1 is also at most 2a. It is easy to verify that this is invariant, i.e., the total cost at
level i is at most 2a for all i ≥ 0, since the worst node cost av halves from level i to level i + 1, but the number of nodes
doubles in the worst case. We obtain the worst total cost when B is a complete balanced binary tree. This tree has at most
O (log |E|) levels and therefore the worst total cost is a · O (log |E|). The total cost of the preemptive schedule is a. �

We now provide a matching lower bound for the power of preemption on a path.

Lemma 11. The power of non-preemption is �(log |E|) for MINCONNECTIVITY on a path.

Proof. We construct a path with |E| edges and divide the |E| jobs into � levels such that level i contains exactly i jobs for
1 ≤ i ≤ �. Hence, we have |E| = �(� + 1)/2 jobs. Let P be a sufficiently large integer such that all of the following numbers
are integers. Let the jth job of level i have release date (j −1)P/i, deadline (j/i)P , and processing time P/i, where 1 ≤ j ≤ i.
Note that now no job has flexibility within its time window, and thus the value of the resulting schedule is P .

We now modify the instance as follows. At every time point t where at least one job has a release date and another job
has a deadline, we stretch the time horizon by inserting a gap of size P. This stretching at time t can be done by adding
a value of P to all time points after the time point t , and also adding a value of P to all release dates at time t . The
deadlines up to time t remain the same. Observe that the value of the optimal preemptive schedule is still P , because when
introducing the gaps we can move the initial schedule accordingly such that we do not maintain any job within the gaps of
size P . Fig. 7 shows a rough sketch of this construction.

We now consider the optimal non-preemptive schedule. The cost of scheduling the only job at level 1 is P . In parallel to
this job we can schedule at most one job from each other level, without having additional cost. This is guaranteed by the
introduced gaps. At level 2 we can fix the remaining job with additional cost P/2. As before, in parallel to this fixed job, we
can schedule at most one job from each level i where 3 ≤ i ≤ �. Applying the same argument to the next levels, we notice
that for each level i we introduce an additional cost of value P/i. Thus the total cost is at least

∑�
i=1 P/i ∈ �(P log �) with

� ∈ �(
√|E|). �

Next, we show that for MAXCONNECTIVITY, the power of preemption can be unbounded.

Theorem 12. For non-preemptive MAXCONNECTIVITY on a path the power of preemption is unbounded.

Proof. Consider a path of four consecutive edges e1 = {s+, u}, e2 = {u, w}, e3 = {w, v}, e4 = {v, s−}, each associated with a
maintenance job as depicted in Fig. 8. That is, r1 = r2 = 0, d1 = r3 = p1 = p4 = 1, p2 = p3 = 2, r4 = d2 = 3, d3 = d4 = 4.

There is no non-preemptive schedule that allows connectivity at any point in time, as the maintenance job of edge ei
blocks edge ei in time slot [i − 1, i]. On the other hand, when allowing preemptive schedules, we can process the job of
edge e2 in [0, 2] and the job of edge e3 in [1, 2] and [3, 4]. Then no maintenance job is scheduled in the time interval [2, 3]
and therefore we have connectivity for one unit of time. �

JID:TCS AID:11484 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.232; Prn:28/02/2018; 11:03] P.12 (1-15)

12 F. Abed et al. / Theoretical Computer Science ••• (••••) •••–•••
Fig. 9. Instance created from a PARTITION instance a1, . . . , an, B . The number inside the blocks are the processing times of the jobs. (For interpretation of
the colors in the figure(s), the reader is referred to the web version of this article.)

5. Mixed scheduling

We know that both the non-preemptive and preemptive MAXCONNECTIVITY and MINCONNECTIVITY on a path are
solvable in polynomial time by Theorem 1 and [15, Theorem 9], respectively. Notice that the parameter g in [15] is in our
setting ∞. Interestingly, the complexity changes when mixing the two job types – even on a simple path.

Theorem 13. MAXCONNECTIVITY and MINCONNECTIVITY with both preemptive and non-preemptive maintenance jobs is weakly
NP-hard, even on a path.

Proof. We reduce the NP-hard PARTITION problem to MAXCONNECTIVITY. We will show that there is a gap in the ob-
jective value between instances derived from YES- and NO-instances of PARTITION, respectively. This gap is same for
MINCONNECTIVITY, since maximizing the time in which we have connectivity is the same as minimizing the time in which
we do not have connectivity.

PARTITION
Input: A set of n natural numbers A = {a1, . . . , an} ⊂N with

∑n
i=1 ai = 2B for some B ∈N.

Problem: Is there a subset S ⊆ A with
∑

a∈S a = B?

Given an instance of PARTITION, we create a MAXCONNECTIVITY instance based on a path consisting of 3n + 2 edges
between s+ and s− with preemptive and non-preemptive maintenance jobs. We create three types of job sets denoted as
J1, J2 and J3, where the first two job sets model the binary decision involved in choosing a subset of numbers to form a
partition, whereas the third job set performs the summation over the numbers picked for a partition. The high-level idea is
depicted in Fig. 9.

The job set J1 := {1, 2, . . . , 2n − 1, 2n} contains 2n tight jobs, i.e., r j + p j = d j for all j ∈ J1. For every element ai ∈ A we
have two tight jobs i and 2n − (i − 1) both having processing time 4n−i B =: xi . The release date of a job j ∈ {2, . . . , n} ⊂ J1

is r j = ∑ j−1
k=1 2xk + ak and r1 = 0. Let τ := ∑n

k=1 2xk + ak . For j ∈ {n + 1, . . . , 2n} ⊂ J1 we have d j = τ + ∑ j
k=n+1 2x2n−k+1 +

a2n−k+1. Note that the tight jobs in J1 are constructed in such a way that everything is symmetric with respect to the time
point τ .

The job set J2 := {2n + 1, . . . , 3n} contains n non-preemptive jobs. Let ji := 2n + i. For every element ai ∈ A we introduce
job ji with processing time p ji = xi + ai , release date r ji = ri , and deadline d ji = d2n−(i−1) . Again, everything is symmetric
with respect to time point τ . The set of tight jobs J1 will force us to schedule jobs from J2 either directly after release, or
directly before the deadline, if we want a good objective value. This will in turn prevent J2 jobs from being scheduled at
the same time.

Finally, the set J3 := {3n + 1, 3n + 2} contains two preemptive jobs, where each of them has processing time W :=
B + ∑n

i=1 xi . Furthermore, we have r3n+1 = 0, d3n+1 = τ , r3n+2 = τ , d3n+2 = 2τ .
We now show that there is a feasible schedule for the constructed instance that disconnects the path for at most 2W

time units if and only if the given PARTITION instance is a YES-instance.
Suppose there is a subset S ⊆ A with

∑
a∈S a = B . For each ai ∈ S , we start the corresponding job ji ∈ J2 at its release

date and the remaining jobs in J2 corresponding to the elements ai ∈ A \ S are scheduled such that they complete at their
deadline. This creates B + ∑n

i=1 xi time slots in both intervals [0, τ] and [τ , 2τ] with no connection between s+ and s− .
The jobs 3n + 1 and 3n + 2 can be preempted in [0, τ] and [τ , 2τ], respectively, and thus if we align their processing with
the chosen maintenance slots, we get a schedule that disconnects s+ and s− for 2W = 2(B + ∑n

i=1 xi) time units.

JID:TCS AID:11484 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.232; Prn:28/02/2018; 11:03] P.13 (1-15)

F. Abed et al. / Theoretical Computer Science ••• (••••) •••–••• 13
Conversely, suppose that there is a feasible schedule for the constructed instance that disconnects the path for at most
2W time units. By induction on i, we show that every job ji = 2n + i either starts at its release date or it completes at its
deadline in such a schedule.

Consider the base case of i = 1. We first observe that w.l.o.g. job j1 either starts at its release date or completes at its
deadline or is scheduled somewhere in [x1, 2τ − x1]. Suppose it starts somewhere in (0, x1) or completes somewhere in
(τ − x1, τ). Then we do not increase the total time where the path is disconnected if we push job j1 completely to the
left or completely to the right. If we schedule job j1 in [x1, 2τ − x1], then the total time where the path is disconnected
is at least 3x1 + a1 > 2x1 + x1. We will now show that x1 ≥ 2(B + ∑n

k=2 xk) for n ≥ 2, which shows that the path is then
disconnected for more than 2W time units, and thus job j1 cannot be processed in [x1, 2τ − x1]. The inequality is true for
n ≥ 2, since

2B + 2
n∑

k=2

xk = 2B(1 +
n∑

k=2

4n−k)

= 2B(1 +
n−2∑
k=0

4k)

= 2B(1 + 1/3(4n−1 − 1))

≤ 4n−1 B = x1.

This finishes the proof for i = 1.
Suppose, the statement is true for i = 1, . . . , � − 1 with � ∈ {2, . . . , n − 1}. As in the base case, we can show that job j�

either starts at its release date or completes at its deadline or is scheduled somewhere in [r j� + x�, d j� − x�]. If job j� is
processed in [r j� + x�, d j� − x�], then the total time where the path is disconnected is at least

�−1∑
k=1

(2xk + ak) + 3x� + a� >

�∑
k=1

2xk + x�.

Again, we will show that x� ≥ 2(B + ∑n
k=�+1 xk) for � ∈ {2, . . . , n − 1}, which shows that the path is then disconnected

for more than 2W time units, and thus job j� cannot be processed in [r j� + x�, d j� − x�]. The inequality is true for � ∈
{2, . . . , n − 1}, since

2B + 2
n∑

k=�+1

xk = 2B(1 +
n∑

k=�+1

4n−k)

= 2B(1 +
n−�−1∑

k=0

4k)

= 2B(1 + 1/3(4n−� − 1))

≤ 4n−�B = x�.

For i = n, we again use the fact that jn either starts at its release date or completes at its deadline or is scheduled
somewhere in [r jn + xn, d jn − xn]. If the latter case is true, then the total time where the path is disconnected is at least

n−1∑
k=1

(2xk + ak) + 3xn + an =
n∑

k=1

(2xk + ak) + xn

> 2(B +
n∑

k=1

xk) = 2W .

There is a feasible schedule for the constructed instance that disconnects the path for at most 2(B +∑n
k=1 xk) time units.

This means that in both [0, τ] and [τ , 2τ] the path is disconnected for exactly B + ∑n
k=1 xk time units. Consider the set

S := {i : ji starts at its release date}. We conclude that

n∑
k=1

xk +
∑
k∈S

ak =
n∑

k=1

xk +
∑
k/∈S

ak =
n∑

k=1

xk + B. � (9)

For MINCONNECTIVITY, running the optimal preemptive and non-preemptive algorithms on the respective job sets indi-
vidually gives a 2-approximation.

JID:TCS AID:11484 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.232; Prn:28/02/2018; 11:03] P.14 (1-15)

14 F. Abed et al. / Theoretical Computer Science ••• (••••) •••–•••
Theorem 14. There is a 2-approximation algorithm for MINCONNECTIVITY on a path with preemptive and non-preemptive mainte-
nance jobs.

Proof. Consider an optimal schedule S∗ for the mixed instance and let |S∗| be the total time of disconnectivity in S∗ .
Furthermore, let S∗

np (resp. S∗
p) be the restriction of S∗ to only non-preemptive (resp. preemptive) jobs. Note that the sched-

ule S∗
np (resp. S∗

p) is feasible for the corresponding non-preemptive (resp. preemptive) instance. We separate the preemptive
from the non-preemptive jobs and obtain two separate instances. Solving them individually in polynomial time and combin-
ing the resulting two solutions Snp and S p to a schedule S gives the claimed result, because |S| ≤ |Snp| +|S p| ≤ |S∗

np| +|S∗
p| ≤

2|S∗|. �
6. Conclusion

Combining network flows with scheduling aspects is a very recent field of research. While there are solutions using IP
based methods and heuristics, exact and approximation algorithms have not been considered extensively. We provide strong
hardness results for connectivity problems, which is inherent to all forms of maintenance scheduling, and give algorithms
for tractable cases.

In particular, the absence of c 3
√|E|-approximation algorithms for some c > 0 for general graphs indicates that heuristics

and IP-based methods [1,16,2] are a good way of approaching this problem. An interesting open question is whether the
inapproximability results carry over to series-parallel graphs, as the network motivating [1,16,2] is series-parallel. Our results
on the power of preemption as well as the efficient algorithm for preemptive instances show that allowing preemption is
very desirable. Thus, it could be interesting to study models where preemption is allowed, but comes at a cost to make it
more realistic.

On a path, our results have implications for minimizing busy time, as we want to minimize the number of times where
some edge on the path is maintained. Here, an interesting open question is whether the 2-approximation for the mixed
case can be improved, e.g. by finding a pseudo-polynomial algorithm, a better approximation ratio, or conversely, to show
an inapproximability result for it.

Acknowledgements

We thank the anonymous reviewers for their comments to improve the paper. This work is supported by the German
Research Foundation under project ME 3825/1 and project A07 of CRC TRR 154. It is also supported by the ‘Excellence Ini-
tiative’ of the German Federal and State Governments and the Graduate School CE at TU Darmstadt. It is partially funded in
project MI1 in the framework of Matheon supported by the Einstein Foundation Berlin and by the Alexander von Humboldt
Foundation.

References

[1] N. Boland, T. Kalinowski, S. Kaur, Scheduling arc shut downs in a network to maximize flow over time with a bounded number of jobs per time period,
J. Comb. Optim. (2015) 1–21, https://doi .org /10 .1007 /s10878 -015 -9910 -x.

[2] N. Boland, T. Kalinowski, H. Waterer, L. Zheng, Scheduling arc maintenance jobs in a network to maximize total flow over time, Discrete Appl. Math.
163 (2014) 34–52, https://doi .org /10 .1016 /j .dam .2012 .05 .027.

[3] S.G. Nurre, B. Cavdaroglu, J.E. Mitchell, T.C. Sharkey, W.A. Wallace, Restoring infrastructure systems: an integrated network design and scheduling (INDS)
problem, European J. Oper. Res. 223 (3) (2012) 794–806, https://doi .org /10 .1016 /j .ejor.2012 .07.010.

[4] A. Bley, D. Karch, F. D’Andreagiovanni, WDM fiber replacement scheduling, Electron. Notes Discrete Math. 41 (2013) 189–196, https://doi .org /10 .1016 /
j .endm .2013 .05 .092.

[5] M. Flammini, G. Monaco, L. Moscardelli, H. Shachnai, M. Shalom, T. Tamir, S. Zaks, Minimizing total busy time in parallel scheduling with application
to optical networks, Theoret. Comput. Sci. 411 (40–42) (2010) 3553–3562, https://doi .org /10 .1016 /j .tcs .2010 .05 .011.

[6] J. Chang, S. Khuller, K. Mukherjee, Active and busy time minimization, in: Proc. of the 12th MAPSP, 2015, pp. 247–249, http://feb .kuleuven .be /
mapsp2015 /Proceedings %20MAPSP %202015 .pdf.

[7] J. Chang, S. Khuller, K. Mukherjee, LP rounding and combinatorial algorithms for minimizing active and busy time, in: G.E. Blelloch, P. Sanders (Eds.),
Proc. of the 26th SPAA, ACM, New York, 2014, pp. 118–127.

[8] R. Canetti, S. Irani, Bounding the power of preemption in randomized scheduling, SIAM J. Comput. 27 (4) (1998) 993–1015, https://doi .org /10 .1137 /
S0097539795283292.

[9] J.R. Correa, M. Skutella, J. Verschae, The power of preemption on unrelated machines and applications to scheduling orders, Math. Oper. Res. 37 (2)
(2012) 379–398, https://doi .org /10 .1287 /moor.1110 .0520.

[10] A.S. Schulz, M. Skutella, Scheduling unrelated machines by randomized rounding, SIAM J. Discrete Math. 15 (4) (2002) 450–469, https://doi .org /10 .
1137 /S0895480199357078.

[11] A.J. Soper, V.A. Strusevich, Power of preemption on uniform parallel machines, in: Proc. of the 17th APPROX, in: LIPIcs. Leibniz Int. Proc. Inform., vol. 28,
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2014, pp. 392–402.

[12] V. Cohen-Addad, Z. Li, C. Mathieu, I. Milis, Energy-efficient algorithms for non-preemptive speed-scaling, in: E. Bampis, O. Svensson (Eds.), Proc. of the
12th WAOA, in: Lecture Notes in Comput. Sci., vol. 8952, Springer International Publishing, 2015, pp. 107–118.

[13] E.W. Parsons, K.C. Sevcik, Multiprocessor scheduling for high-variability service time distributions, in: D.G. Feitelson, L. Rudolph (Eds.), Proc. of the
JSSPP, in: Lecture Notes in Comput. Sci., vol. 949, Springer Berlin Heidelberg, 1995, pp. 127–145.

[14] S. Ha, Compile-Time Scheduling of Dataflow Program Graphs with Dynamic Constructs, Ph.D. thesis, University of California, Berkeley, 1992, http://
www.eecs .berkeley.edu /Pubs /TechRpts /1992 /ERL-92 -43 .pdf.

https://doi.org/10.1007/s10878-015-9910-x
https://doi.org/10.1016/j.dam.2012.05.027
https://doi.org/10.1016/j.ejor.2012.07.010
https://doi.org/10.1016/j.endm.2013.05.092
https://doi.org/10.1016/j.tcs.2010.05.011
http://feb.kuleuven.be/mapsp2015/Proceedings%20MAPSP%202015.pdf
http://refhub.elsevier.com/S0304-3975(18)30117-8/bib4368616E674B68756C6C65724D756B6865726A65653134s1
http://refhub.elsevier.com/S0304-3975(18)30117-8/bib4368616E674B68756C6C65724D756B6865726A65653134s1
https://doi.org/10.1137/S0097539795283292
https://doi.org/10.1287/moor.1110.0520
https://doi.org/10.1137/S0895480199357078
http://refhub.elsevier.com/S0304-3975(18)30117-8/bib536F706572533134s1
http://refhub.elsevier.com/S0304-3975(18)30117-8/bib536F706572533134s1
http://refhub.elsevier.com/S0304-3975(18)30117-8/bib436F68656E41646461644574416C3135s1
http://refhub.elsevier.com/S0304-3975(18)30117-8/bib436F68656E41646461644574416C3135s1
http://refhub.elsevier.com/S0304-3975(18)30117-8/bib506172736F6E7353657663696B3935s1
http://refhub.elsevier.com/S0304-3975(18)30117-8/bib506172736F6E7353657663696B3935s1
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/ERL-92-43.pdf
https://doi.org/10.1016/j.endm.2013.05.092
http://feb.kuleuven.be/mapsp2015/Proceedings%20MAPSP%202015.pdf
https://doi.org/10.1137/S0097539795283292
https://doi.org/10.1137/S0895480199357078
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/ERL-92-43.pdf

JID:TCS AID:11484 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.232; Prn:28/02/2018; 11:03] P.15 (1-15)

F. Abed et al. / Theoretical Computer Science ••• (••••) •••–••• 15
[15] R. Khandekar, B. Schieber, H. Shachnai, T. Tamir, Real-time scheduling to minimize machine busy times, J. Sched. 18 (6) (2015) 561–573, https://
doi .org /10 .1007 /s10951 -014 -0411 -z.

[16] N. Boland, T. Kalinowski, S. Kaur, Scheduling network maintenance jobs with release dates and deadlines to maximize total flow over time: bounds
and solution strategies, Comput. Oper. Res. 64 (2015) 113–129, https://doi .org /10 .1016 /j .cor.2015 .05 .011.

[17] N.L. Boland, M.W.P. Savelsbergh, Optimizing the hunter valley coal chain, in: H. Gurnani, A. Mehrotra, S. Ray (Eds.), Supply Chain Disruptions: Theory
and Practice of Managing Risk, Springer, London, 2012, pp. 275–302.

[18] T. Kalinowski, D. Matsypura, M.W. Savelsbergh, Incremental network design with maximum flows, European J. Oper. Res. 242 (1) (2015) 51–62, https://
doi .org /10 .1016 /j .ejor.2014 .10 .003.

[19] G.B. Mertzios, M. Shalom, A. Voloshin, P.W.H. Wong, S. Zaks, Optimizing busy time on parallel machines, in: Proc. of the 26th IPDPS, IEEE, 2012,
pp. 238–248.

[20] B. Korte, J. Vygen, Combinatorial Optimization: Theory and Algorithms, 4th edition, Springer Publishing Company, Incorporated, 2007.

https://doi.org/10.1007/s10951-014-0411-z
https://doi.org/10.1016/j.cor.2015.05.011
http://refhub.elsevier.com/S0304-3975(18)30117-8/bib426F6C616E64533132s1
http://refhub.elsevier.com/S0304-3975(18)30117-8/bib426F6C616E64533132s1
https://doi.org/10.1016/j.ejor.2014.10.003
http://refhub.elsevier.com/S0304-3975(18)30117-8/bib4D6572747A696F734574416C3132s1
http://refhub.elsevier.com/S0304-3975(18)30117-8/bib4D6572747A696F734574416C3132s1
http://refhub.elsevier.com/S0304-3975(18)30117-8/bib506174684465636F6D70s1
https://doi.org/10.1007/s10951-014-0411-z
https://doi.org/10.1016/j.ejor.2014.10.003

	Scheduling maintenance jobs in networks
	1 Introduction
	2 Preemptive scheduling
	3 Non-preemptive scheduling
	4 Power of preemption
	5 Mixed scheduling
	6 Conclusion
	Acknowledgements
	References

