
Algorithms and Complexity for Periodic Real-Time Scheduling∗

Vincenzo Bonifaci† Ho-Leung Chan‡ Alberto Marchetti-Spaccamela§

Nicole Megow†

Abstract

We investigate the preemptive scheduling of periodic tasks with hard deadlines. We show
that, even in the uniprocessor case, no pseudopolynomial time algorithm can test the feasibility
of a task system within a constant speedup bound, unless P = NP. This result contrasts with
recent results for sporadic task systems. For two special cases, synchronous task systems and
systems with a constant number of different task types, we provide the first polynomial time
constant-speedup feasibility tests for multiprocessor platforms. Furthermore, we show that
the problem of testing feasibility is coNP-hard for synchronous multiprocessor task systems.
The complexity of some of these problems has been open for a long time.

We also propose a weight maximization variant of the feasibility problem, where every
task has a nonnegative weight, and the goal is to find a subset of tasks that can be scheduled
feasibly and has maximum weight. We give the first constant-speed, constant-approximation
algorithm for the case of synchronous task systems, together with related hardness results.

Keywords: real-time scheduling, periodic task system, feasibility test, Earliest Deadline First,
approximation algorithms, computational complexity, inapproximability

1 Introduction

We consider problems concerned with the feasibility of scheduling a set of periodic tasks in a hard
real-time environment. A real-time task system consists of a finite number of tasks, each of which
generates an infinite sequence of jobs. There is given one or multiple processors, each of which can
process only one job at the time. Now, each job must be executed by the system, possibly with
preemptions and migrations, so as to meet its deadline.

In a periodic task system T , a task i ∈ T is defined by a quadruple (ri, ci, di, pi), where the
offset (or starting time) ri specifies the time instant at which the first job of task i is released, the
execution time ci defines the processing requirement for each job of task i, the relative deadline di
represents the time interval between the release of a job and its hard deadline, and the period pi
specifies the temporal separation between the release of two successive jobs of task i. Thus, the
k-th job of task i is released at time ri + (k − 1)pi and has to receive ci time units of execution
before time ri + (k − 1)pi + di.

In this paper, we restrict our attention to constrained-deadline periodic task systems, in which
the assumption is made that di ≤ pi, for all i ∈ T . We also assume all input parameters to have
integer value; rational values can also be accomodated, by clearing denominators. Execution of a
job can be stopped at any time and resumed later on a different processor, without penalty.

A task system is said to be feasible if there exists a schedule in which each job completes
its execution requirement before its deadline. The system is called A-schedulable if algorithm A

constructs a feasible schedule for the task system. The feasibility problem is concerned with deciding
if a given task system is feasible.

∗A preliminary version of this work appeared in Proceedings of the 21st ACM-SIAM Symposium on Discrete

Algorithms, SIAM, 2010.
†{bonifaci,nmegow}@mpi-inf.mpg.de. Max-Planck-Institut für Informatik, Saarbrücken, Germany.
‡hlchan@cs.hku.hk. The University of Hong Kong, Hong Kong.
§alberto@dis.uniroma1.it. Sapienza Università di Roma, Italy. Partially supported by the ICT Programme of

the European Union under contract ICT-2008-215270 (FRONTS).

1

A well-known necessary condition for the feasibility of a task system T on m processors is that
U(T) :=

∑
i∈T ci/pi ≤ m. The quantity U(T) is called the utilization of the task system and ci/pi

is called the utilization of task i. However, the condition U(T) ≤ m is far from being sufficient for
feasibility. In fact, the feasibility problem for periodic task systems is coNP-hard [7, 23].

In the hope of overcoming hardness results, it is meaningful to relax the accuracy requirements
of the feasibility problem slightly. For this reason, the concept of approximate feasibility has been
introduced [9], which can be interpreted as a form of resource augmentation [17, 29]. For a fixed
speedup parameter σ ≥ 1, the problem of deciding σ-approximate feasibility is as follows.

σ-Approximate Feasibility
Input: a periodic task system T and a positive integer m.
Output: an answer YES or NO such that

• YES implies that T is feasible on m speed-σ processors, and

• NO implies that T is not feasible on m speed-1 processors.

We also consider the following natural optimization variant of the feasibility problem, in which
we ask for a maximum weight subset of tasks that can be scheduled feasibly.

Maximum Weight Feasible Subsystem (MaxFS)
Input: a periodic task system T , a positive integer m, weights w : T → Q+.
Output: a subset of tasks S ⊆ T such that S is feasible on m speed-1 processors.
Objective: maximize

∑
i∈S wi.

Clearly, MaxFS is not easier than the feasibility problem from the point of view of exact
solutions. On the other hand, an approximate solution to the weight maximization problem does
not immediately yield a useful answer to the feasibility problem, so MaxFS might be easier from
the point of view of approximate solutions.

As in the case of the feasibility problem, we analyze MaxFS using resource augmentation.
An algorithm A is a σ-speed ρ-approximation algorithm for MaxFS if, on any input, A returns a
subset of tasks that is feasible on m speed-σ processors and has total weight at least 1/ρ times the
weight of any subset of tasks that is feasible on m speed-1 processors.

Previous work. For periodic task systems, most of the existing results on feasibility testing
concern the uniprocessor case. In the uniprocessor setting, the well-known Earliest Deadline
First (EDF) algorithm, that schedules jobs in order of their absolute deadline, is optimal in the
sense that any feasible system is EDF-schedulable. In spite of that, the feasibility problem is
strongly coNP-hard: intuitively, the reason is that the first missed deadline might occur after an
exponential amount of time [7, 23].

In the special case of uniprocessor scheduling with a constant number of distinct task types,
Baruah et al. [7] show how to solve the feasibility problem in polynomial time, by formulating it
as an integer linear program of constant dimension.

Another interesting special case is that of synchronous task systems. In this case all tasks start
generating jobs simultaneously, that is, ri = 0 for all i ∈ T . In this setting, Albers and Slomka [1]
provide a polynomial time (1 + ǫ)-approximate feasibility test on a single processor, for any ǫ > 0.
A pseudopolynomial time feasibility test is possible when U(T) ≤ µ for some constant µ < 1 [7].
The complexity of the exact – that is, 1-approximate – feasibility problem for synchronous task
systems has been open for a long time [7]. Independently of our work, Eisenbrand and Rothvoss [11]
showed that this problem is weakly coNP-hard already in the uniprocessor case.

In the multiprocessor case, the feasibility problem seems even harder. The best algorithm
known uses exponential time and space [21]. Phillips et al. [29] proved that EDF, when run on m
processors of speed 2 − 1/m, can meet all deadlines of a system that is feasible on m speed-1
processors; but, again, this does not yield an efficient test for feasibility, or even approximate
feasibility. However, recently some approximate feasibility tests have been derived for sporadic
task systems [6,8]. Sporadic tasks are defined similarly to periodic tasks, except that no offsets are
given and the “period” defines the minimum (as opposed to exact) temporal separation between

2

the release of two successive jobs of one task. Consequently, a sporadic task system implicitly
defines an infinite set of job sequences, and the system is called feasible when all the job sequences
compatible with its parameters are schedulable.

The weight maximization problem is a natural extension of the feasibility problem that is
relevant in various applications, which is also reflected by the attention that related scheduling
problems received in the past, see for example [5, 12, 19, 20] and references therein. The crucial
difference between previous considerations and our setting lies in the periodicity of the tasks. We
are not aware of any existing result on weight maximization for periodic task systems.

Our contribution. We show that σ-Approximate Feasibility is coNP-hard for periodic task
systems for any σ ≤ n1−ǫ, where n is the number of tasks and ǫ > 0, even on a single processor.
A similar argument also shows that σ-Approximate Feasibility is strongly coNP-hard for any
constant σ. Assuming P 6=NP, this rules out any polynomial or pseudopolynomial time algorithm
for testing feasibility within a constant speedup factor. Since augmenting the speed is equivalent
to shrinking the execution times, a consequence is that the feasibility problem remains coNP-hard
even for task systems with utilization bounded by an arbitrarily small constant. This contrasts
with previous positive approximability results for sporadic task systems [1, 6, 8].

To solve the complexity status of σ-Approximate Feasibility, we reduce from a maximiza-
tion variant of the number theoretic Simultaneous Congruences problem; see for example [24].
This problem is interesting by itself and we are not aware of any hardness of approximation result
for it. We prove that this problem is NP-hard to approximate within a factor n1−ǫ, for any ǫ > 0,
where n is the number of congruences.

In the special case of synchronous systems we show that the feasibility problem for multiple
processors is coNP-hard. To this aim we first define and study Least Common Multiple Pack-
ing, a number theoretic problem that given a set T of integers and two integers k and L requires
to find a subset S ⊆ T of cardinality at least k, such that the least common multiple of integers
in S is no more than L; we then give a reduction from Least Common Multiple Packing to
the feasibility problem. Independently of our work, Eisenbrand and Rothvoss proved that even the
uniprocessor case of the feasibility problem is coNP-hard for synchronous systems [11]. Thus, our
result is narrower in scope than the one in [11], since it applies only to multiprocessor systems.
However, our proof of the result is completely different and we believe it might be of independent
interest.

We complement our negative results for arbitrary periodic tasks with the first constant approxi-
mation algorithms for two restricted models. We provide a polynomial time (2−1/m)-approximate
test for multiprocessor task systems with a constant number of different task types. Similar to the
uniprocessor test by [7], we decide feasibility by solving integer linear programs (ILPs) of constant
dimension; in our case, however, solving a single ILP is not sufficient and we need to consider a
constant number of them. For synchronous multiprocessor task systems, we give a (2− 1/m+ ǫ)-
approximate feasibility test that runs in time polynomial in the input and 1/ǫ. To obtain this
positive result, we introduce a refinement of a notion of total workload per interval, which was
introduced recently in the context of sporadic task systems [8].

We already mentioned that MaxFS is not easier than the problem of deciding the feasibility
of a task system. We show that MaxFS is NP-hard to approximate within n1−ǫ, even in the case
of a uniprocessor and of unit task weights. Moreover, we show that MaxFS is NP-hard even in
the strongly restricted setting of synchronous arrivals with implicit deadlines, where di = pi for
all tasks. On the positive side, we give the first constant-speed, constant-approximation algorithm
for synchronous task systems: a (3 − 1/m)-speed ρm-approximate algorithm, where ρm = 3 + ǫ
for m = 1 and ρm = 8 + ǫ for m > 1.

Our results for the feasibility problem and the weight maximization problem are summarized
in Tables 1 and 2, respectively.

3

Single processor Multiple processors
σ Complexity σ Complexity

Arbitrary n1−ǫ coNP-complete ∗
systems 1 coNP-complete [7] 1 PSPACE ∗

Synchronous 1 + ǫ P [1] 2− 1/m+ ǫ P ∗
systems 1 coNP-complete [11] 1 coNP-hard ∗

Constant no. 1 P [7] 2− 1/m P ∗
of task types 1 pseudopoly ∗

Table 1: Results for σ-Approximate Feasibility. Results that are given in this paper are marked
with ∗. Here n is the number of tasks, m is the number of processors, and ǫ is any positive real
constant.

Single processor Multiple processors
σ ρ Complexity σ ρ Complexity

Arbitrary 1 n1−ǫ
NP-hard ∗

systems n1−ǫ 1 coNP-hard ∗
Synchronous 2 3 + ǫ P ∗ 3− 1/m 8 + ǫ P ∗

systems 1 1 NP-hard ∗

Table 2: Results for Maximum Weight Feasible Subsystem. The notation is as in Table 1,
where in addition ρ is the approximation factor.

2 The approximate feasibility problem

2.1 Arbitrary periodic task systems

In this section we prove hardness of approximation for the feasibility problem for periodic task
systems. In earlier complexity investigations showing that the problem is coNP-hard, Leung and
Merrill [23] reduce from the Simultaneous Congruences problem. This problem is known to
be NP-complete, even in the strong sense [7, 24]. We consider the following natural maximization
variant of the decision problem.

Maximum Simultaneous Congruences (MaxSC)
Input: a1, . . . , an ∈ N, b1, . . . , bn ∈ N.
Output: S ⊆ {1, . . . , n} such that the set {t ∈ N : t ≡ ai (mod bi) for all i ∈ S} is nonempty.
Objective: Maximize |S|.

This problem can be seen as a Maximum Feasible Subsystem type of problem [3], with univariate
congruences in place of multivariate linear equalities. We show the following inapproximability
result for MaxSC.

Lemma 2.1. For any ǫ > 0, MaxSC is NP-hard to approximate within a factor n1−ǫ.

Proof. We give an approximation preserving reduction from Maximum Independent Set, which
is known to be NP-hard to approximate within n1−ǫ [33]. Consider a graph G(V,E) where V =
{1, 2, . . . , n}. We set ai = i for i ∈ V . Moreover, to every edge e ∈ E we associate a distinct prime
number π(e) > n. We remark that this step can be implemented in polynomial time, since for
example it is known [28] that there are at least n2 prime numbers in the range (n, 4n4), and we
can find them by an exhaustive search. For every node i ∈ V with the set of incident edges δ(i)
we define bi :=

∏
e∈δ(i) π(e); see Figure 1.

Now if (i, j) /∈ E then gcd(bi, bj) = 1 and so ai ≡ aj (mod gcd(bi, bj)). If (i, j) ∈ E
then gcd(bi, bj) = π((i, j)) > max(ai, aj) so that ai ≡/ aj (mod gcd(bi, bj)), simply because ai 6= aj ,
and so the two congruences t ≡ ai (mod bi), t ≡ aj (mod bj) cannot have simultaneous solution.

4

1

2 3

4

(a)

1

2 3

4

5

7

11

13

17

(b)

a1 1 b1 5 · 13 = 65 t ≡ 1 (mod 65)
a2 2 b2 5 · 7 · 17 = 595 t ≡ 2 (mod 595)
a3 3 b3 7 · 11 = 77 t ≡ 3 (mod 77)
a4 4 b4 11 · 13 · 17 = 2431 t ≡ 4 (mod 2431)

(c)

Figure 1: The reduction from Max Independent Set to Max Simultaneous Congruences.
(a) Original graph; (b) prime numbers associated to the edges of the graph; (c) corresponding
system of congruences.

0 k 2k 3k 4k 5k 6k 7k 8k

t ≡ 1 (mod 2) 7→ task 1

t ≡ 2 (mod 3) 7→ task 2

t ≡ 3 (mod 4) 7→ task 3

task 4

Figure 2: The reduction from Max Simultaneous Congruences to σ-Approximate Feasi-
bility.

Thus, by the Generalized Chinese Remainder Theorem, see for example [4], a set S of congruences
is satisfiable if and only if S is an independent set in G. The claim follows.

Theorem 2.2. For any ǫ > 0 and 1 ≤ σ ≤ n1−ǫ, σ-Approximate Feasibility is coNP-hard,
even in the single processor case.

Proof. We show that a polynomial time algorithm for σ-Approximate Feasibility could be used
to distinguish between congruence systems that admit k simultaneously satisfiable congruences,
and systems for which no set of k/σ simultaneously satisfiable congruences exists, which is NP-hard
by Lemma 2.1.

We associate a task to every congruence. For each 1 ≤ i ≤ n, we set ri = k · ai, ci = σ, di = k,
pi = k · bi. We also add an extra task with rn+1 = 0, cn+1 = 1, and dn+1 = pn+1 = k; see also
Figure 2. Without loss of generality we assume that σ is an integer (otherwise we round it up).

If k congruences are simultaneously satisfiable, then there is a time t when k jobs are released
simultaneously, meaning that during the interval [t, t + k] at least σ · k + 1 > σ · k units of work
would have to be processed, and thus, the task system is infeasible for a speed-σ machine. Hence,
the algorithm must output NO.

On the other hand, if there is no set of k/σ simultaneously satisfiable congruences, then in
every interval [t, t+ k], the total work to be processed is an integer strictly less than σ · (k/σ) + 1,
meaning that it is at most k and so it can be processed by a unit speed machine using, for example,
EDF. Thus the algorithm must output YES.

We observe that the numbers encoded in the reductions above are in general exponentially large;
one could then wonder if allowing a pseudopolynomial running time can improve the approximation

5

ratio. This turns out not to be the case.

Theorem 2.3. For any constant σ ≥ 1, σ-Approximate Feasibility is strongly coNP-hard,
even in the single processor case.

Proof. It will be enough to show that it is strongly NP-hard to approximate MaxSC within a
factor of σ; the result then follows by the same argument as in Theorem 2.2. We use the same
construction as in Lemma 2.1, except that we reduce from instances of Maximum Independent
Set in which the degree of the graph is bounded by some constant ∆. It is known that there is
some ǫ > 0 such that this problem is NP-hard to approximate within ∆ǫ [2]. Pick the smallest ∆
such that ∆ > σ1/ǫ. For any fixed σ, this yields a constant bound on the degree of the graph
and so the numerical values (the ai’s and bi’s) constructed in the reduction of Lemma 2.1 are
polynomially bounded in n. An approximation algorithm with a ratio of σ for MaxSC would
imply that Maximum Independent Set can be approximated within a factor of ∆ǫ, which is
strongly NP-hard.

For a single processor, the feasibility problem is always in coNP – the existence of short witnesses
of infeasibility has been known since quite some time [7]. However, that is not known to hold for
the multiprocessor case. We conclude this section by observing that the multiprocessor case can
at least be solved in polynomial space. We need the following definition.

Definition 2.1. A schedule is called cyclic if the following holds for each processor and each time
t ≥ maxi ri: if the processor is idle at time t, then it is idle at time t + lcm{p1, . . . , pn}, and if
the processor is working on a job of task i at time t, then it is working on another job of task i,
released lcm{p1, . . . , pn} time units later, at time t+ lcm{p1, . . . , pn}.

It is an old result that it suffices to consider cyclic schedules to determine feasibility.

Proposition 2.4 ([21]). A periodic task system T is feasible if and only if it admits a cyclic
schedule.

Theorem 2.5. The feasibility problem for periodic task systems is in PSPACE.

Proof. It is enough to prove the existence of a nondeterministic polynomial space algorithm for
the feasibility problem, since nondeterminism can always be removed at the cost of squaring the
amount of space required [32]. By Proposition 2.4, it is enough to decide whether a cyclic schedule
exists. We can take as a reference the interval [tmin, tmax] = [maxi ri,maxi ri + lcm{p1, . . . , pn}].
Let ji be a generic job from task i; denote its release date by r(ji) and its absolute deadline by d(ji).
If ji is such that r(ji) ∈ [tmin, tmax], but d(ji) > tmax, we “wrap” ji around – in other words we
make it available for processing in both the intervals [r(ji), tmax] and [tmin, d(ji)− lcm{p1, . . . , pn}].
Otherwise its availability window is simply [r(ji), d(ji)]. Notice that all these intervals have integral
extreme points; thus, it suffices to restrict to schedules that preempt and migrate only at integral
time points (see [7] for a proof of this fact).

In order to keep track of the jobs’ availability windows it is sufficient to keep one “global clock”
counter of polynomially many bits, since tmax is at most exponentially large in the input size.
Moreover, we keep one counter for each task i that counts how much execution the currently active
job from task i (if any) has already received; the assumption that di ≤ ti implies that at most one
job from each task can be pending at any time. Another counter for each task is sufficient to track
the processing of wrapped-around jobs, since there is at most one such job for each task. The
algorithm now guesses, at each time step, the set of at most m jobs to be scheduled, and updates
the counters accordingly. If at any time some deadline is missed, we report a failure; otherwise
we report success after reaching time tmax. Some nondeterministic execution of this algorithm
succeeds if and only if the task system is feasible.

2.2 Task systems with a constant number of task types

We have seen that Theorem 2.2 excludes the existence of any constant-approximate polynomial
time algorithm for deciding the feasibility of an arbitrary periodic task system. However, for the

6

ci

t1 t2

ffd(jki ,∆)

r(jki) d(jki)

Figure 3: The forward forced demand of a job.

special case in which the system consists of a constant number of different task types, we derive
a polynomial time feasibility test that decides either that EDF provides a feasible schedule on m
processors of speed 2 − 1/m, or that the system is infeasible on m speed-1 processors. In this
model, tasks belonging to the same task type have identical parameters (offset, execution time,
relative deadline and period).

In the context of sporadic task systems, Bonifaci et al. [8] introduced a lower bound on the
total processing requirement of a task system in an interval, which they called forward forced
demand (ffd). (In the following we use the shorthand x+ := max{x, 0}).

Definition 2.2 (Forward forced demand). Consider a task system T where a task i ∈ T consists of
jobs jki , k = 1, 2, . . ., with corresponding release dates r(jki) := ri+(k−1)pi and deadlines d(jki) :=
ri + (k − 1)pi + di. Given a time interval ∆ = [t1, t2], we define

len(∆) := t2 − t1

ffdT (j
k
i ,∆) :=

{
(ci − (t1 − r(jki))

+)+ if d(jki) ∈ ∆,

0 otherwise;

ffdT (i,∆) :=
∑

k∈N

ffdT (j
k
i ,∆)

ffdT (∆) :=
∑

i∈T

ffdT (i,∆).

The definition is illustrated in Figure 3. Let ki be the number of jobs of task i that are released
strictly before t1 and due within the interval ∆, and let k′i be the number of jobs of task i that are
released and due in ∆. Then a straightforward calculation gives

ffdT (∆) =
∑

i∈T

k′ici + (ci − (t1 − ri − (ki − 1)pi)
+)+. (1)

Since the forward forced demand is a lower bound on the amount of work that has to be spent
in a given time interval, the following necessary condition for feasibility holds.

Proposition 2.6. If a periodic task system T is feasible on m unit speed processors, then ffdT (∆) ≤
m · len(∆) for any interval ∆.

The following result shows that a small forward forced demand is sufficient to ensure the EDF-
schedulability of a task system on multiple processors of an appropriate speed. The claim was
originally proved for sporadic task systems, but in fact it applies to arbitrary collections of jobs,
and thus also to periodic task systems.

Lemma 2.7 ([8]). If a periodic task system T is not EDF-schedulable on m speed-σ processors,
then there is an interval ∆ such that ffdT (∆)/len(∆) > m(σ − 1) + 1.

With these prerequisites we can state our result.

Theorem 2.8. For periodic task systems with a constant number of task types and m processors,
there is a polynomial time algorithm solving σ-Approximate Feasibility, for any σ ≥ 2− 1/m.

7

Proof. Let s denote the number of distinct types of tasks each defined by a quadruple (ri, ci, di, pi),
and let ni, for i = 1, . . . , s, denote the number of tasks of the i-th task type. Furthermore, we
use lcm{p1, . . . , ps} to denote the least common multiple of periods p1, . . . , ps. Assume there
is an interval ∆ = [t1, t2] such that ffdT (∆) > m · len(∆). Without loss of generality we can
assume that ri ≤ t1 for each task i ∈ T ; if not, we can increase both t1 and t2 by some multiple
of lcm{p1, . . . , ps} and the forward forced demand will not decrease.

We construct a system of linear and non-linear inequalities that characterizes such an interval ∆.
By Proposition 2.6, a feasible solution of this system implies that T is infeasible.

ri + piki ≥ t1, i = 1, . . . , s (2)

ri + pi(ki − 1) < t1, i = 1, . . . , s (3)

ri + piki + pi(k
′
i − 1) + di ≤ t2, i = 1, . . . , s (4)

ri ≤ t1, i = 1, . . . , s (5)
s∑

i=1

nicik
′
i + ni(ci − (t1 − ri − pi(ki − 1))+)+ > m(t2 − t1) (6)

t1, t2, ki, k
′
i ∈ Z+.

The variables of this system of inequalities are t1, t2, and ki, k
′
i, for i = 1, . . . , s. Here, ki is

the number of jobs of a task of type i that are released strictly before t1 – this is ensured by (2)
and (3). Variable k′i is the number of jobs of a task of type i that are released and due within
the interval [t1, t2], see (4). The left hand side of inequality (6) expresses ffdT (∆) (compare with
(1)), so (6) enforces that the workload inequality in Proposition 2.6 is violated, that is, ffdT (∆) >
m · len(∆).

All the inequalities are linear except the last one. The expression of ffdT (∆) on the left hand
side of inequality (6) contains the non-linear term gi := (ci− (t1− ri− pi(ki− 1))+)+. Notice that
by constraint (3) gi can take only one of two values for any i = 1, . . . , s:

gi =

{
ci − (t1 − ri − pi(ki − 1)) if ci − (t1 − ri − pi(ki − 1)) > 0 (6’)

0 if ci − (t1 − ri − pi(ki − 1)) ≤ 0 (6”).

The idea now is to guess, for each i, which of the two cases occurs. That is, we consider 2s integer
linear programs. Every such program consists of the constraints (2)–(6) above, with inequality (6)
simplified in the appropriate way, plus inequality (6’) or (6”) for each i, depending on the guess
for the corresponding gi term.

For any choice of gi, for i = 1, . . . , s, this yields a system of 5s+ 1 linear inequalities. Since s
is fixed, we obtain integer linear programs with a constant number of variables and inequalities.
Therefore, for each of these programs, we can verify in polynomial time if there is an integral
solution, using Lenstra’s algorithm [22].

If any of these integer programs has a feasible solution, then we have found an overloaded
interval ∆ which witnesses that the task system is infeasible by Proposition 2.6. Otherwise, such
an interval cannot exist and thus Lemma 2.7 implies that EDF yields a feasible schedule on m
processors of speed 2− 1/m.

When m = 1 the above test is exact, since 2 − 1/m = 1. We do not know whether an
exact feasibility test with polynomial running time is possible when m > 1. However, a simple
pseudopolynomial time test does exist; in fact, it exists even with the weaker assumption that the
number of distinct periods is constant.

Theorem 2.9. For periodic task systems with a constant number of distinct periods the feasibility
problem can be solved in pseudopolynomial time.

Proof. Let k denote the number of distinct periods, and let L denote the least common multiple
of the periods. Notice that L ≤ (maxi pi)

k, which is pseudopolynomially large for fixed k.
As in the proof of Theorem 2.5, it is enough to show that a cyclic schedule exists for the

interval [tmin, tmax], with tmin = maxi ri, tmax = maxi ri + L. To this end we can use a standard

8

0 1 2 3 4 5 6 7 8
t

f(t) 0 1 1 1 1 3 0 1

1 1 1 1 f1(t)

1 1 f2(t)

1 f3(t)

1 f4(t)

f(t)

q1 = 2 7→ task 1

q2 = 3 7→ task 2

q3 = 5 7→ task 3

q4 = 6 7→ task 4

Figure 4: Construction used in the proof of Theorem 2.11.

construction [16] in which we formulate the feasibility problem for the finite set of jobs in [tmin, tmax]
as a maximum flow problem on a bipartite network, with one layer of nodes corresponding to time
units (these nodes have a maximum inflow of m) and another layer of nodes corresponding to
jobs (with a maximum outflow equal to the processing time), with a job connected to a time unit,
via a unit capacity arc, if the job is available for processing in that time unit. A cyclic schedule
exists if and only if a flow of value equal to the total processing requirement of the jobs exists in
this network, which can be tested in pseudopolynomial time.

2.3 Synchronous task systems

In the special case of synchronous task systems, where all tasks have equal starting times, we
show coNP-hardness and give a constant approximate feasibility test.

To derive hardness, we reduce from the following number theoretic problem. We believe that
this problem is of independent interest.

Least Common Multiple Packing
Input: a sequence q1, . . . , qm of positive integers and two positive integers k and L.
Question: is there S ⊆ {1, 2, . . . ,m} such that |S| > k and lcm{qi : i ∈ S} ≤ L?

Theorem 2.10. Least Common Multiple Packing is NP-hard.

Proof. A (k, n)-Mignotte sequence [26] is a set of n pairwise coprime integers π1 < π2 < . . . < πn

such that the product of any k of them is larger than the product of any k − 1 of them, that
is Π1≤i≤kπi > Π1≤i≤k−1πn−i+1. Such a sequence can be constructed in polynomial time by using
the fact that for x being large enough each interval [x, x + x3/5) contains a prime number [15].
Starting from x0 = n10, we construct a sequence of intervals [xi−1, xi), i = 1, . . . , n, with xi :=

n10 + 2in6 > xi−1 + x
3/5
i−1, each of which is guaranteed to contain a prime number. Thus, the full

interval [n10, n10 + n8] contains n primes which can be found by exhaustive search. They form
a (k, n)-Mignotte sequence, since n10k > (n10 + n8)k−1 for n larger than some constant.

We reduce from the decision version of Maximum Clique to Least Common Multiple
Packing. Given a graphG = ({1, 2, . . . , n}, E) and an integer s, we construct an (s+1, n)-Mignotte
sequence π1 < . . . < πn and define m = |E| integers by setting qe := πi · πj for each e = (i, j) ∈ E.
We also set L := Π1≤i≤sπn−i+1 and k :=

(
s
2

)
− 1.

Now, if G has an s-clique, and S is the corresponding set of k+1 edges, we have lcm{qi : i ∈ S} ≤
Π1≤i≤sπn−i+1 = L, since S spans exactly s vertices. Conversely, if G has no s-clique, any set S of
at least k+1 edges must span at least s+1 vertices, so that lcm{qi : i ∈ S} ≥ Π1≤i≤s+1πi > L.

We can now proceed to prove hardness of the feasibility problem for synchronous systems.

Theorem 2.11. The feasibility problem for synchronous task systems is coNP-hard.

Proof. We reduce from Least Common Multiple Packing. Given q1, . . . , qm, k, L ∈ N we
create a system of m + k tasks. For 1 ≤ i ≤ m, task i has the following parameters: ri = 0,
ci = qi − 1, di = qi − 1, pi = qi. Notice that each job from any of these tasks must be started
as soon as it is released in order to meet its deadline. Thus, m processors are certainly necessary

9

ci

t1 t2

fd(jki ,∆)

r(jki) d(jki)
ci

t1 t2

fd(jki ,∆)

d(jki)r(jki)

Figure 5: The forced demand of a job.

for feasibility. We will define the remaining k tasks in such a way that it will be possible to fit
them in the unused time slots on the m processors if and only if there is no solution to the Least
Common Multiple Packing instance.

For any t ≥ 0 and 1 ≤ i ≤ m, let

fi(t) :=

{
1 if t ≡ −1 (mod qi)
0 otherwise.

That is, fi(t) = 1 if and only if task i does not have to be scheduled during interval [t, t + 1].
Furthermore, let f(t) :=

∑
1≤i≤m fi(t); this is the total number of “free” processor slots during

[t, t+1]; see Figure 4 for an illustration. We now define the remaining k identical tasks by setting,
for each j = m + 1, . . . ,m + k: rj = 0, cj = (1/k) ·

∑
0≤t<L f(t), dj = L, pj = lcm{q1, . . . , qm}.

We remark that all these parameters can be computed in polynomial time, in particular cj =
(1/k)

∑
1≤i≤m ⌊L/pi⌋.

For the analysis, consider the quantity F := max0≤t<L f(t). This is the maximum number of
slots that are simultaneously free at any time between 0 and L. Now, the total amount of work
needed for the additional k tasks is

∑
0≤t<L f(t). However, because there are only k additional

tasks and we cannot process a task simultaneously on more than one processor, the total useful
time is in fact

∑
0≤t<Lmin(f(t), k). So it will be possible to schedule all the tasks if and only

if F ≤ k.
For a set S ⊆ {1, . . . ,m}, the minimum t for which fi(t) = 1 for all i ∈ S is easily seen

to be lcm{qi : i ∈ S} − 1. Thus, F ≤ k if and only if there is no set S such that |S| > k
and lcm{qi : i ∈ S} − 1 < L, that is, if and only if the instance of Least Common Multiple
Packing has no solution. Thus, coNP-hardness follows from Lemma 2.10.

In the remainder of this section, we give an approximate feasibility test for synchronous sys-
tems. To this aim, we introduce a strengthened formulation of the forward forced demand (recall
Definition 2.2). The definition of ffd for any interval [t1, t2] only considers the demand of jobs
which have their deadline in [t1, t2]. This may neglect the demand of some job jki with deadline
in (t2, t2 + ci) that might need to be partially scheduled also within [t1, t2] to ensure feasibility.
Motivated by this, we introduce a refinement of the forward forced demand.

Definition 2.3 (Forced demand). Consider a set of tasks T where a task i ∈ T consists of a finite
or countable set of jobs jki , k = 1, 2, . . ., with corresponding release dates r(jki) := ri + (k − 1)pi
and deadlines d(jki) := ri + (k − 1)pi + di. Given an interval ∆ = [t1, t2], we define

fdT (j
k
i ,∆) := (ci − (t1 − r(jki))

+ − (d(jki)− t2)
+)+,

fdT (i,∆) :=
∑

k

fdT (j
k
i ,∆),

fdT (∆) :=
∑

i∈T

fdT (i,∆).

Again, by construction, the forced demand of an interval is a lower bound on the total processing
requirement of a feasible task system in that interval.

Proposition 2.12. If a set of tasks T is feasible on m unit speed processors, then fdT (∆) ≤
m · len(∆) for any interval ∆.

10

The following lemma shows that, in a synchronous system, fd(∆)/len(∆) is maximized when
the interval ∆ starts at time 0; this is not necessarily the case for the ratio ffd(∆)/len(∆).

Lemma 2.13. For any synchronous task system T ,

max
∆

fdT (∆)

len(∆)
= max

t∈N

fdT ([0, t])

t
.

Proof. Let ∆ = [t1, t2] be such that fdT (∆)/len(∆) is maximized. We construct a new periodic (not
necessarily synchronous) task system T ′ which differs from T in the start times and has no smaller
forced demand: for each task i, choose a new release time r′i ∈ [0, pi] such that a job of task i is
released at t1. To see that the forced demand does not decrease, we consider any task i and observe
that the change in the fd value when increasing start times is due to (i) the decreased contribution
of the last job jℓi released strictly before t2 and (ii) the increased contribution of the last job jki
released strictly before t1. No other job’s contribution is affected. Now, (i) the decrease in the
contribution of jℓi is bounded above by min{ r′i, ci }, and (ii) the increased contribution of jki is at
least min{ r′i, ci }. Thus, fdT ′(∆) ≥ fdT (∆).

For periodic task systems this implies that the expression fdT (∆)/len(∆) is maximized on
any interval of length len(∆) if all tasks simultaneously release a job at the beginning of the
interval. By definition, in a synchronous system the interval [0, t2 − t1] has exactly this property.
Thus, fdT ′(∆) = fdT ([0, t2 − t1]), which implies the lemma.

Lemma 2.14. If a synchronous task system T is not EDF-schedulable on m speed-σ processors,
then there is t ∈ N such that fdT ([0, t])/t > m(σ − 1) + 1.

Proof. By Lemma 2.7, if T is not EDF-schedulable, there is an interval ∆ such that

m(σ − 1) + 1 < ffdT (∆)/len(∆).

But ffdT (∆)/len(∆) ≤ fdT (∆)/len(∆) ≤ maxt fdT ([0, t])/t by Lemma 2.13. The claim follows.

Since by Lemma 2.13 we can focus on intervals of the form [0, t], we obtain a simpler formula
for the forced demand.

Proposition 2.15. For any synchronous task system T and t ∈ N,

fdT ([0, t]) =
∑

i∈T

fdT (i, [0, t]),

fdT (i, [0, t]) = kici + (ci − (kipi + di − t)+)+ ,

where ki :=
⌊ t+ pi − di

pi

⌋
.

Figure 6 illustrates the function fdT (i, [0, t]).

Theorem 2.16. Let ǫ > 0. For synchronous task systems there is an algorithm solving σ-
Approximate Feasibility, for any σ ≥ 2 − 1/m + ǫ, with running time that is polynomial
in the input size and 1/ǫ.

Proof. Our approach is to approximate the maximum load of any time interval, that is, the quan-
tity λ∗ := maxt fdT ([0, t])/t. To this end we can adopt the same technique as in [8], of which we
give here a streamlined proof. For each task i, define

thr(i) := di − ci + ⌈1/ǫ⌉ · pi,

f̂dT (i, [0, t]) :=

{
fdT (i, [0, t]) if t ≤ thr(i),
ci
pi

(t− (di − ci)) if t > thr(i).

11

0
t

di − ci

di

pi + di − ci

ci

thr(i) = ⌈1/ǫ⌉pi + di − ci

⌈1/ǫ⌉ ci

(⌈1/ǫ⌉+ 1)ci

fdT (i, [0, t])

f̂dT (i, [0, t])

Figure 6: The function fd(i, [0, t]) as a function of t (solid line) and its approximation f̂d(i, [0, t])
(dashed line) used in the proof of Theorem 2.16.

The definition is illustrated in Figure 6. Notice that f̂dT (i, [0, t]) ≤ fdT (i, [0, t]) ≤ (1+ǫ)f̂dT (i, [0, t]),

since when t ≤ thr(i), f̂dT (i, [0, t]) = fdT (i, [0, t]), and when t > thr(i) we have

fdT (i, [0, t])

f̂dT (i, [0, t])
≤

⌊
thr(i)+pi−di

pi

⌋
ci + ci

(ci/pi)(thr(i)− (di − ci))

=

⌊
⌈1/ǫ⌉pi+pi−ci

pi

⌋
ci + ci

⌈1/ǫ⌉ ci

=
⌈1/ǫ⌉+ 1

⌈1/ǫ⌉

≤ 1 + ǫ.

Summing across tasks we obtain

f̂dT ([0, t]) ≤ fdT ([0, t]) ≤ (1 + ǫ)f̂dT ([0, t]) for all t ∈ N. (7)

The main observation is that f̂dT ([0, t]) is a piecewise linear function with breakpoints in the set

K =
⋃

i∈T

{t ≤ thr(i) : ∃k ∈ N : t = (k − 1) · pi + di − ci}

∪
⋃

i∈T

{t ≤ thr(i) : ∃k ∈ N : t = (k − 1) · pi + di}.

Consequently, the function f̂dT ([0, t])/t is piecewise monotone and achieves its maximum at a point
in K. Since the cardinality of K is O(n/ǫ), the maximum can be found efficiently. Let λ be its
value, so that λ ≤ λ∗ ≤ (1 + ǫ)λ by (7). Now we compare λ with m: if λ > m, there must be
an interval ∆ such that fdT (∆) > m · len(∆), and by Proposition 2.12 the task system cannot be
feasible on m unit speed machines. If on the other hand λ ≤ m, then for any t ∈ N,

fdT ([0, t])

t
≤ λ∗ ≤ (1 + ǫ)λ

≤ (1 + ǫ)m,

12

Algorithm 1 Approximate feasibility test for synchronous task systems

1: For each i ∈ T :

thr(i)← di − ci + ⌈1/ǫ⌉ · pi,

Ki ←{t ≤ thr(i) : ∃k ∈ N : t = (k − 1) · pi + di − ci}

∪ {t ≤ thr(i) : ∃k ∈ N : t = (k − 1) · pi + di}.

2: K ←
⋃

i∈T Ki.
3: λ← maxt∈K fdT ([0, t])/t.
4: If λ > m return “infeasible on m unit speed machines”.
5: If λ ≤ m return “EDF-schedulable on m speed (2− 1/m+ ǫ) machines”.

and by Lemma 2.14 (with σ = 2 − 1/m + ǫ) the task system must be EDF-schedulable on m
speed-(2− 1/m+ ǫ) machines. The resulting algorithm is summarized as Algorithm 1.

The factor 2− 1/m in the statement of Theorem 2.16 is tight when schedulability is witnessed
by EDF, since there exist feasible job sets that cannot be scheduled by EDF unless the speed is
augmented by at least 2 − 1/m [29]. Moreover, the ǫ error term cannot be removed when m = 1,
unless P=NP, as that would imply an exact polynomial-time feasibility test, while the problem is
coNP-hard [11].

3 The maximum weight feasible subsystem problem

3.1 Hardness

Theorem 3.1. For any ǫ > 0, MaxFS is NP-hard to approximate within a factor n1−ǫ, even in
the single processor case with unit task weights.

Proof. We give an approximation preserving reduction from Maximum Clique, which is NP-hard
to approximate within n1−ǫ, where n is the number of vertices in the graph [13]. Using the same
construction as in Lemma 2.1, we obtain numbers ai, bi such that:

• if (i, j) ∈ E then ai ≡/ aj (mod gcd(bi, bj));

• if (i, j) /∈ E then ai ≡ aj (mod gcd(bi, bj)).

We associate a task to every node i. We set, for all 1 ≤ i ≤ n, ri = ai, ci = 1, di = 1, pi = bi.
Now any feasible subset of tasks must be a clique in the original graph, otherwise there would be
a time where at least two jobs are released simultaneously and thus cannot be completed in time
by a single unit-speed processor. Vice versa, any clique in the original graph determines a subset
of tasks that is feasible, because no two tasks are ever released at the same time and all execution
times are 1.

Theorem 3.2. MaxFS is NP-hard even in the synchronous, single processor case when di = pi
for all tasks i ∈ T .

Proof. We reduce from Subset Sum: given integers a1, . . . , an and a target integer A, decide if
there is a subset S ⊆ {1, . . . , n} such that

∑
i∈S ai = A. We set ci = wi = ai, di = pi = A, ri = 0

for all i. In a periodic task system where di = pi for all i, a subset S of tasks is feasible on one
processor if and only if

∑
i∈S ci/pi ≤ 1, that is,

∑
i∈S ai ≤ A [25]. Now an optimal subset of tasks

has total weight A if and only if there is a subset S such that
∑

i∈S ai = A.

13

3.2 Approximation algorithm for synchronous systems

Theorem 3.1 motivates us to focus on synchronous systems, for which we give a (3−1/m)-speed ρm-
approximate algorithm, where ρm = 3 + ǫ for m = 1 and ρm = 8 + ǫ for m > 1. Our algorithm
will build on approximation algorithms for the following auxiliary problems.

Max-weight Preemptive Real-Time Scheduling (Prts)
Input: a set of jobs J = {ji}i∈T , each with release date ri, execution time ci, absolute deadline di,
and weight wi, as well as a positive integer m.
Output: a schedule of J on m machines, with preemption and migration allowed.
Objective: maximize the total weight of on-time jobs (a job is on-time if it is completed within
the deadline).

Budgeted Max-Weight Preemptive Real-Time Scheduling (Bprts)
Input: same as in the Prts problem, and in addition a cost bi for each job, and a budget B.
Output: a feasible subset J ′ ⊆ J of jobs. A subset J ′ is feasible if all jobs in J ′ can be scheduled
on-time on the m machines and the total cost of all jobs in J ′ is at most B.
Objective: maximize the total weight of J ′.

Lemma 3.3 ([18,30]). For m = 1, there is a (1+ ǫ)-approximate algorithm for Prts. For m > 1,
there is a (6 + ǫ)-approximate algorithm for Prts.

Proof. The first claim follows by a result of Pruhs and Woeginger [30, Theorem 4.4]: there ex-
ists a (1 + ǫ)-approximate algorithm for maximizing the weighted number of on-time jobs in the
scheduling problem 1|pmtn, rj |

∑
j wj(1 − Uj), which is exactly Prts when m = 1. The proof

in [30] is in fact for the minimization version 1|pmtn, rj |
∑

j wjUj, but the same argument applies
to the maximization variant.

The second claim follows by the first, combined with a result by Kalyanasundaram and Pruhs [18,
Theorem 3.1]: if there is a ρ-approximate algorithm for 1|pmtn, rj|

∑
j wj(1 − Uj), then there is

a 6ρ-approximate algorithm for P |pmtn, rj |
∑

j wj(1− Uj).

Lemma 3.4. There is a ρm-approximate algorithm for Bprts, with ρm = 3 + ǫ for m = 1,
and ρm = 8 + ǫ for m > 1.

Lemma 3.4 follows directly from Lemma 3.3 and the following fact on subset selection problems,
proved by Kulik and Shachnai [19]. A subset selection problem is a maximization problem in which
any subset of a feasible solution is also feasible. Notice that Bprts is a subset selection problem,
and Prts is a relaxation of Bprts without the budget constraint.

Lemma 3.5 ([19]). Given a subset selection problem with a linear budget constraint, if there is
a ρ-approximate algorithm for the problem without the budget constraint, then for any ǫ > 0 there
is a (ρ+ 2 + ǫ)-approximate algorithm for the problem with the budget constraint.

Our algorithm for MaxFS is as follows.

Algorithm 2 Approximation algorithm for MaxFS

1: For each task i in task system T , let j1i be the first job generated by task i; it has release
date 0, deadline di, execution time ci, and weight wi, as defined in T . The cost bi is defined
as ci/pi. Let first(T) = {j

1
i : i ∈ T }.

2: Apply the algorithm from Lemma 3.4 to the set first(T), with budget B = m. Let J ′ ⊆ first(T)
be the feasible set of jobs returned by the algorithm.

3: Let T ′ be the set of tasks corresponding to J ′, that is, T ′ = {i : j1i ∈ J ′}. Output T ′.

We prove the performance bound of the above algorithm using the following two lemmata.
Let T ∗ be a subset of tasks that is optimal for MaxFS.

Lemma 3.6. The set T ′ returned by Algorithm 2 has total weight at least 1/ρm times that of T ∗.

14

Proof. Let J∗ = {j1i : i ∈ T ∗}. Since T ∗ is feasible, jobs in J∗ can be completed by some preemptive
schedule on m processors and their total cost

∑
j1
i
∈J∗ ci/pi is at most m, since no set of tasks with

utilization larger than m can be feasible on m processors. Hence, J∗ is a feasible set of jobs. Then,
by Lemma 3.4, the set J∗ has total weight at most ρm times that of J ′. Equivalently, T ′ has total
weight at least 1/ρm times that of T ∗.

Hence, if T ′ can be scheduled on m processors with speed (3 − 1/m), we have a (3 − 1/m)-
speed ρm-approximate algorithm. To show this, we prove a more general lemma as follows.

Lemma 3.7. Let T be a set of tasks that satisfies the following two properties.

1. The set of jobs first(T) can be completed on-time by m speed-x processors.

2. The total utilization of T , that is,
∑

i∈T ci/pi, is at most m · y.

Then T is EDF-schedulable on m speed-(x + y + 1− 1/m) processors.

Proof. We start by proving that for any t ∈ N,

fdT ([0, t]) ≤
∑

i∈T

ci
pi
· t+

∑

j∈first(T)

fdT (j, [0, t]). (8)

Inequality (8) can be proven by considering different tasks separately. If t < di, we have

fdT (i, [0, t]) = (ci − (di − t))+ = fdT (j
1
i , [0, t]) ≤

ci
pi
· t+ fdT (j

1
i , [0, t]).

On the other hand, if t ≥ di,

fdT (i, [0, t]) ≤
ci
pi
· t+ ci =

ci
pi
· t+ fdT (j

1
i , [0, t]).

Inequality (8) follows by summing over tasks.
Property 1 of the hypothesis ensures that all jobs in first(T) can be completed on-time by m

speed-x processors. Then, by Proposition 2.12, we obtain

∑

j∈first(T)

fdT (j, [0, t]) ≤ mxt.

Property 2 states that the total utilization of T is at most my, that is,
∑

i∈T (ci/pi) · t ≤ myt.
Hence, using (8),

fdT ([0, t]) ≤
∑

i∈T

ci
pi
· t+

∑

j∈first(T)

fdT (j, [0, t])

≤ myt+mxt

≤ (m(σ − 1) + 1)t,

with σ = x+ y+1− 1/m, and by Lemma 2.14 T is EDF-schedulable on m speed-σ processors.

Theorem 3.8. Algorithm 2 is (3− 1/m)-speed ρm-approximate for MaxFS for synchronous task
systems on m processors.

Proof. By Lemma 3.6, the total weight of T ′ is at least 1/ρm times that of T ∗. Note that the
corresponding set J ′ is feasible on m unit-speed processors and the total utilization of T ′ is at
most m because of the budget constraint. By Lemma 3.7, T ′ is EDF-schedulable on m speed-
(3− 1/m) processors and the theorem follows.

15

4 Open Problems

Several interesting open problems remain in the context of this paper.

1. Is there a pseudopolynomial time algorithm for the feasibility problem in synchronous mul-
tiprocessor systems (or even synchronous uniprocessor systems)?

2. Is there a polynomial time algorithm for the feasibility problem in arbitrary multiprocessor
systems with a fixed number of task types?

3. Is there a constant-speed, constant-approximation algorithm for MaxFS in arbitrary multi-
processor systems?

In a broader perspective, it would be interesting to determine other tractable special cases of the
feasibility problem.

Acknowledgements.

We thank two anonymous referees whose comments helped to improve the presentation of the
paper.

References

[1] K. Albers and F. Slomka. An event stream driven approximation for the analysis of real-time
systems. In Proc. 16th Euromicro Conf. on Real-Time Systems, pages 187–195, 2004.

[2] N. Alon, U. Feige, A. Wigderson and D. Zuckerman. Derandomized graph products. Compu-
tational Complexity, 5:60–75, 1995.

[3] E. Amaldi, V. Kann. The complexity and approximability of finding maximum feasible sub-
systems of linear relations. Theoretical Computer Science, 147(1–2):181–210, 1995.

[4] E. Bach and J. Shallit. Algorithmic number theory. Vol. I: Efficient algorithms. MIT Press,
1996.

[5] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the throughput of multiple
machines in real-time scheduling. SIAM Journal on Computing, 31(2):331–352, 2001.

[6] S. K. Baruah and T. P. Baker. Schedulability analysis of global EDF. Real-Time Systems,
38(3):223–235, 2008.

[7] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity concerning the
preemptive scheduling of periodic, real-time tasks on one processor. Real-Time Systems,
2:301–324, 1990.

[8] V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller. A constant-approximate feasibility test
for multiprocessor real-time scheduling. In D. Halperin and K. Mehlhorn, editors, Proc. 16th
European Symp. on Algorithms, volume 5193 of Lecture Notes in Computer Science, pages
210–221. Springer, 2008.

[9] S. Chakraborty, S. Künzli, and L. Thiele. Approximate schedulability analysis. In Proc. 23rd
Real-Time Systems Symp., pages 159–168, 2002.

[10] B. Doerr. Private communication, 2009.

[11] F. Eisenbrand and T. Rothvoß. EDF-schedulability of synchronous periodic task systems is
coNP-hard. In Proc. 21st ACM-SIAM Symposium on Discrete Algorithms, 2010.

[12] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan. Dependent rounding and its
applications to approximation algorithms. Journal of the ACM, 53(3):324–360, 2006.

16

[13] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York, 1979.

[14] O. Goldreich. Foundations of cryptography. Vol. I: Basic techniques. Cambridge University
Press, 2001.

[15] D. R. Heath-Brown. The number of primes in a short interval. Journal für die reine und
angewandte Mathematik (Crelle’s Journal), 389:22-63, 1988.

[16] W. A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly, 21:177–
185, 1974.

[17] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the
ACM, 47(4):617–643, 2000.

[18] B. Kalyanasundaram and K. Pruhs. Eliminating Migration in Multi-Processor Scheduling.
Journal of Algorithms, 38(1):2–24, 2001.

[19] A. Kulik and H. Shachnai. On Lagrangian relaxation and subset selection problems. In Proc.
6th Workshop on Approximation and Online Algorithms, pages 160–173, 2009.

[20] E. L. Lawler. A dynamic programming algorithm for preemptive scheduling of a single machine
to minimize the number of late jobs. Annals of Operations Research, 26:125–133, 1990.

[21] E. L. Lawler and C. U. Martel. Scheduling periodically occurring tasks on multiple processors.
Information Processing Letters, 12(1):9–12, 1981.

[22] H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Mathematics of
Operations Research, 8(4):538–548, 1983.

[23] J. Y.-T. Leung and M. L. Merrill. A note on preemptive scheduling of periodic, real-time
tasks. Information Processing Letters, 11(3):115–118, 1980.

[24] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic,
real-time tasks. Performance Evaluation, 2(4):237–250, 1982.

[25] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1):46–61, 1973.

[26] M. Mignotte. How to share a secret? In Proc. of the Workshop on Cryptography, pages
371–375, 1982.

[27] I. Niven, H. Zuckerman, and H. Montgomery. An introduction to the theory of numbers. John
Wiley & Sons, 1991.

[28] C. H. Papadimitriou. Computational complexity. Addison-Wesley Publishing Company, Read-
ing, MA, 1994.

[29] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via resource
augmentation. Algorithmica, 32(2):163–200, 2002.

[30] K. Pruhs and G. Woeginger. Approximation schemes for a class of subset selection problems.
Theoretical Computer Science, 382(2):151–156, 2007.

[31] B. Rosser. Explicit bounds for some functions of prime numbers. American Journal of Math-
ematics, 63(1):211–232, 1941.

[32] W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2):177–192, 1970.

[33] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic
number. Theory of Computing, 3(1):103–128, 2007.

17

	Introduction
	The approximate feasibility problem
	Arbitrary periodic task systems
	Task systems with a constant number of task types
	Synchronous task systems

	The maximum weight feasible subsystem problem
	Hardness
	Approximation algorithm for synchronous systems

	Open Problems

