
An O(logm)-Competitive Algorithm for Online Machine

Minimization∗

Lin Chen† Nicole Megow† Kevin Schewior‡

October 5, 2015

Abstract

We consider the online machine minimization prob-
lem in which jobs with hard deadlines arrive online
over time at their release dates. The task is to deter-
mine a feasible preemptive schedule on a minimum
number of machines. Our main result is a general
O(logm)-competitive algorithm for the online prob-
lem, where m is the optimal number of machines used
in an offline solution. This is the first improvement
on an intriguing problem in nearly two decades. To
date, the best known result is a O(log(pmax/pmin))-
competitive algorithm by Phillips et al. (STOC 1997)
that depends on the ratio of maximum and minimum
job sizes, pmax and pmin. Even for m = 2 no bet-
ter algorithm was known. Our algorithm is in this
case constant-competitive. When applied to laminar
or agreeable instances, our algorithm achieves a com-
petitive ratio of O(1) even independently of m.

The following two key components lead to our
new result. Firstly, we derive a new lower bound
on the optimum value that relates the laxity and
the number of jobs with intersecting time windows.
Then, we design a new algorithm that is tailored
to this lower bound and balances the delay of jobs
by taking the number of currently running jobs into
account.

1 Introduction

Minimizing resource usage is a key to achieving
economic, environmental, or societal goals. We
consider the fundamental problem of minimizing the
number of machines that is necessary for feasibly
scheduling preemptive jobs with release dates and

∗This research was supported by the German Science Foun-
dation (DFG) under contract ME 3825/1. The third author

was supported by the DFG within the research training group

‘Methods for Discrete Structures’ (GRK 1408).
†Technische Universität München, Zentrum

für Mathematik, Garching, Germany. Email:
{lchen,nmegow}@ma.tum.de.
‡Technische Universität Berlin, Institut für Mathematik,

Berlin, Germany. Email: schewior@math.tu-berlin.de.

hard deadlines. We consider the online variant of this
problem in which every job becomes known to the
online algorithm only at its release date. We denote
this problem as the online machine minimization
problem. We will show that we may restrict to
the semi-online problem variant in which the online
algorithm is given slightly more information, namely,
the optimal number of machines, m, in advance.

In their seminal paper, Phillips, Stein, Torng,
and Wein [9] presented a O(log(pmax/pmin))-
competitive algorithm, where pmax and pmin denote
the maximum and minimum job processing times. It
remained a wide open question if the problem admits
a constant-competitive online algorithm [9, 10]. It
was not even known whether such an algorithm exists
for m = 2. Despite serious efforts within the com-
munity, no significant improvement has been made
within nearly two decades [10].

In this paper we present an O(logm)-competitive
algorithm for the preemptive online machine mini-
mization problem. This is the first result, that de-
pends only on the optimum value, m, instead of other
input parameters. Our algorithm is O(1)-competitive
when m is bounded or when all jobs have processing
time windows which are either agreeable or laminar.

Further related results. The preemptive semi-
online machine minimization problem, in which the
optimal number of machines is known in advance, has
been investigated extensively by Phillips et al. [9].
They show a general lower bound of 5/4 and leave a
huge gap to the upper bound O(log(pmax/pmin)) on
the competitive ratio for the so-called Least Laxity
First (LLF) Algorithm. Not surprisingly, they rule
out that the Earliest Deadline First (EDF) Algorithm
may improve on the performance of LLF by showing
a lower bound of Ω(log(pmax/pmin)).

The non-preemptive variant of our online prob-
lem is quite hopeless. In fact, no algorithm can
achieve a competitive ratio sublinear in the num-
ber of jobs [11]. The non-preemptive problem with
unit processing times was studied in a series of pa-
pers [4, 6, 7, 11, 12] and implicitly in the context of

energy minimization in [1]. It has been shown that
an optimal online algorithm has the exact competi-
tive ratio of e ≈ 2.72 [1, 4].

In a closely related problem variant, an online
algorithm is given extra speed to the given number of
machines instead of additional unit-speed machines.
The goal is to find an algorithm that requires the
minimum extra speed. This problem seems much
better understood and speedup factors around 2 are
known (see [8, 9]). However, the power of speed is
much stronger than that of additional machines since
it can be viewed to allow parallel processing of jobs to
some extent. None of the algorithms that are known
to perform well for the speed problem, e.g., EDF and
LLF, admit an f(m)-competitive algorithm for any
function f for the machine minimization problem [9].
Notwithstanding, giving a small amount of extra
speed allows for a constant competitive ratio also for
the machine minimization problem [8].

We also mention that the offline problem, in
which all jobs are known in advance, can be solved
optimally in polynomial time if job preemption is al-
lowed [5]. The solution of the natural linear program-
ming (LP) formulation can be rounded in a straight-
forward way by assigning fractionally assigned work-
load in a round robin fashion over all machines within
a time unit. However, both solutions, the optimum
and the LP solutions, may drastically change under
online job arrivals.

Our contribution. Our main contribution is a
new preemptive online algorithm with a competi-
tive ratio O(logm), where m is the optimum num-
ber of machines. It is the first improvement upon
the longstanding best-known competitive ratio of
O(log(pmax/pmin)) by Phillips et al. [9] – even for
m = 2. Our algorithm is O(1)-competitive if the
optimum value m is bounded. Moreover, the same
algorithm is also O(1)-competitive ratio for two im-
portant complementary classes of instances, namely
laminar and agreeable instances – it achieves the ra-
tio of 96 for laminar instances and 176 for agreeable
instances.

We firstly observe that we may restrict to the
semi-online model, in which an online algorithm
is given the optimum number of machines m in
advance. Furthermore, we show that jobs with a
small processing time relative to the entire time
window (“loose” jobs) are easy to schedule. The
difficult task is to schedule “tight” jobs.

The two key components that lead to our new
result are a new lower bound on the optimum offline
solution m and a new sophisticated delaying scheme
for processing jobs. Our lower bound is tailored to
“tight” jobs only. While more standard bounds rely

on the load in a given interval, we relate for a given set
of time intervals the number of jobs with intersecting
time windows in these intervals to the fraction that
the laxity of those jobs takes of the total interval. The
laxity of a job is (informally) the maximum amount
of time that a job can be delayed without violating
the deadline. For a given optimum value m, our
new lower bound construction actually gives an upper
bound on the number of jobs with intersecting time
intervals, which is how we utilize the result.

To get some intuition for our algorithm, we inter-
pret the laxity of a job as the maximum budget for de-
laying a job. Whenever a job is not processing (dur-
ing its feasible time window), its budget is charged
by the amount of this delay. Taking this viewpoint,
the well-known algorithm Least Laxity First (LLF)
is the algorithm that gives priority to the jobs with
smallest remaining budgets. Such a naive charging
scheme does not give any good bound for general in-
stances [9]. It may seem promising that LLF performs
much better when restricting to “tight” jobs. How-
ever, this turns out to be not the case as we show
LLF does not achieve a competitive ratio of f(m) for
any function f even for instances consisting of only
“tight” jobs. The reason for failing is that LLF con-
siders only the absolute remaining laxity and ignores
the total size of jobs and the amount of time they
spent already in the system. In particular, a huge
job with huge laxity will be delayed until it is too
late while batches of smaller jobs with smaller laxity
arrive.

To overcome this problem, we need a more bal-
anced scheme for decreasing the laxity or, equiva-
lently, for using the budget for not-processing a job.
Driven by the new lower bound, we design an algo-
rithm that balances the delay of jobs by taking the
number of jobs with intersecting intervals into ac-
count. We open m′ = O(m logm) machines and par-
tition the total budget for not-processing a job (i.e.,
its laxity) into m′ + 1 “sub-budgets”. The i-th “sub-
budget” can be accessed only at time points when
i − 1 jobs are already being processed. We consider
the available jobs in decreasing order of release dates
and process those with an empty corresponding sub-
budget. All other jobs pay for not being processed
from their corresponding “sub-budgets”. Our main
analysis is concerned with relating the algorithm then
to the lower bound.

Outline. In Section 2, we define the problem and
give general structural insights. We derive a new
lower bound on the optimum number of machines
in Section 3. The description of our new algorithm
is in Section 4 followed by its analysis in Section 5.
Finally, in Section 6, we analyze the performance of

our algorithm when being applied to agreeable and
to laminar instances, respectively.

2 Problem Definition and Preliminary
Results

Problem Definition. Given is a set of n jobs
where each job j ∈ {1, 2, . . . , n} has a processing
time pj ∈ N, a release date rj ∈ N which is the earliest
possible time at which the job can be processed, and
a deadline dj ∈ N by which it must be completed.
The task is to open a minimum number of machines
such that there is a feasible schedule in which no
job misses its deadline. In a feasible schedule each
job j is scheduled for pj units of time within the time
window [rj , dj). Each opened machine can process
at most one job at any time, and no job is running
on multiple machines at the same time. We allow
job preemption, i.e., a job can be preempted at any
moment in time and may resume processing later on
the same or any other machine.

To evaluate the performance of our online al-
gorithms, we perform a competitive analysis (see
e.g. [2]). We call an online algorithm ρ-competitive
if m′ machines with m′ ≤ ρ · m suffice to guaran-
tee a feasible solution for any instance that admits a
feasible schedule on m machines.

Notation. For a job j, the laxity is defined as
`j = dj − rj − pj . We call a job α-loose, for some
α < 1, if pj ≤ α(dj − rj) and α-tight otherwise. The
(processing) interval of j is I(j) = [rj , dj), and j is
said to cover each t ∈ I(j). For a set of jobs S, we
define I(S) = ∪j∈SI(j). For I = ∪ki=1[ai, bi) where
[a1, b1), . . . , [ak, bk) are pairwise disjoint, we define

the length of I to be |I| =
∑k
i=1(bi − ai).

Indexing. Throughout this paper we assume w.l.o.g.
that jobs are indexed in increasing order of release
dates, and we break ties in decreasing order of
deadlines. Hence, for any two jobs j, j′ with j < j′

one of the three cases holds: (i) rj < rj′ , (ii) rj = rj′

and dj > dj′ , or (iii) I(j) = I(j′).

Characterization of the Optimum. Given an
interval I, the contribution of a job j to I is C(j, I) :=
max{0, |I ∩ I(j)| − `j}, i.e., the minimum processing
time that j must receive during I in any feasible
schedule. The contribution of a job set S to I is the
sum of the individual contributions of jobs in S, and
we denote it by C(S, I). Clearly, if S admits a feasible
schedule on m machines, C(S, I)/|I| must not exceed
m. Interestingly, this bound is tight, which we prove
in the full version of the paper.

Theorem 2.1. Let m be the minimum number of
machines needed to schedule a given job set S fea-
sibly. There exists a union of intervals I with
dC(S, I)/|I|e = m but none with dC(S, I)/|I|e > m.

Reduction to the Semi-Online Problem. We
show that we may assume that the optimum num-
ber of machines m is known in advance by losing at
most a factor 4 in the competitive ratio. To do so,
we employ the general idea of doubling an unknown
parameter [3]. More specifically, we open additional
machines whenever the optimum solution has dou-
bled.

Theorem 2.2. Given a ρ-competitive algorithm for
semi-online machine minimization, there is a
doubling-based algorithm that is 4ρ-competitive for
online machine minimization.

In the rest of the paper we will thus be concerned
with the semi-online problem.

Scheduling α-loose Jobs. We show that, for any
fixed α < 1, α-loose jobs are easy to handle via
a simple greedy algorithm called Earliest Deadline
First (EDF) on m′ = ρ ·m machines with ρ = O(1).
This algorithm schedules at any time m′ unfinished
jobs with the smallest deadline.

Theorem 2.3. Let α ∈ (0, 1). EDF is an 1/(1−α)2-
competitive algorithm for any instance that consists
only of α-loose jobs.

Scheduling α-tight Jobs. In the remaining part
of the paper we assume that all jobs are α-tight for
a fixed α ∈ (0, 1). The good performance of EDF on
α-loose jobs, does not apply to instances with α-tight
jobs only. In fact, we show the following strong lower
bound.

Theorem 2.4. For arbitrary α ∈ (0, 1), EDF has a
competitive ratio of Ω(n) even if m = 2 and every job
is α-tight.

The Algorithm Least Laxity First (LLF) seems a
promising candidate for this case. LLF schedules at
any time m′ unfinished jobs with smallest remaining
laxity. However, we show the following negative
result.

Theorem 2.5. For arbitrary α ∈ (0, 1), LLF is not
O(1)-competitive even if m = 2 and every job is α-
tight.

3 A Lower Bound on the Optimum

In this section we derive a new lower bound on m,
the offline optimum number of machines. Basic lower
bounds for this problem rely on the total load that
can be shown to contribute to a (family of) time
intervals. To obtain our new bound, we restrict now
explicitly to α-tight jobs for some constant α ∈ (0, 1),
i.e., pj > α(dj − rj) for any job j. This enables
us to relate to the laxity of jobs. The main new
ingredient is to take into account the number of
intervals covering the time points in a given set of
intervals and relate it to the laxity of those jobs. This
new lower bound might be of independent interest.

In our setting we are given the optimum m. In
that case, the new lower bound allows us to upper
bound the number of jobs with intersecting time
intervals, which is how we utilize the result.

We use the following definition.

Definition 3.1. Let G be a set of α-tight jobs and
let T be a non-empty finite union of time intervals.
For some µ ∈ N and β ∈ (0, 1), a pair (G,T) is called
(µ, β)-critical if

(i) each t ∈ T is covered by at least µ distinct jobs
in G,

(ii) |T ∩ I(j)| ≥ β`j for any j ∈ G.

In this section, we show the following theorem.

Theorem 3.1. If there exists a (µ, β)-critical pair,

then m ≥ µ−4−4·dlog 8/βe
8+8/α·dlog 8/βe = Ω

(
µ

log 1/β

)
.

If m is given, this theorem immediately implies
the following upper bound on the number of jobs
covering the relevant intervals.

Corollary 3.1. If there exists a (µ, β)-critical pair,
then µ = O(m log 1/β).

To show the theorem by contradiction, we con-
sider a (µ, β)-critical pair (G,T), and show how to
select jobs from G with a total load contribution to
some superset of T that contradicts Theorem 2.1.

To that end, the following simple lemma will be
useful several times.

Lemma 3.1. Let S be a set of jobs. There exists a
subset S′ ⊆ S such that each time in I(S) is covered
by at least one and at most two different jobs in S′.

A simple greedy algorithm finds such a subset.
This result is surely folkloric, but as we could not
find a proof, we provide one in the full version of the
paper.

Using this simple lemma, we show the first of two
important properties of critical pairs.

Lemma 3.2. Let (G,T) be a (µ, β)-critical pair.
There exist pairwise disjoint subsets G?1, . . . , G

?
bµ/4c

of G such that

(i) T ⊆ I(G?1) ⊆ · · · ⊆ I(G?bµ/4c),

(ii)
∑
j∈G?

i
`j ≤ 4|T |/β for every 1 ≤ i ≤ bµ/4c.

Proof. We first select disjoint subsets G1, . . . , Gdµ/2e
of G with a laminar interval structure, i.e., I(G1) ⊆
· · · ⊆ I(Gdµ/2e), such that each time point in T is
covered by at least one and at most two distinct
jobs from each Gi: Starting from i = dµ/2e, the
iterative procedure selects a job set Gi from G+

i :=
G \ (Gi+1 ∪ · · · ∪ Gdµ/2e) using Lemma 3.1. To also
satisfy (ii), we will later further select certain subsets
from G1, . . . , Gbµ/2c.

Before that, we show that indeed T ⊆ I(G1) ⊆
· · · ⊆ I(Gdµ/2e). Firstly, we show that I(Gi) ⊆
I(Gi+1) for every i. This follows from the fact that
I(G+

1) ⊆ · · · ⊆ I(G+
dµ/2e) (by definition of G+

i) and

I(Gi) = I(G+
i) for all i (by Lemma 3.1). Secondly, we

show T ⊆ I(G1), i.e., each time point in T is covered
by at least one job in G1. Recall that every time
point in T is covered by at least µ distinct jobs in G
and, according to Lemma 3.1, covered by at most two
distinct jobs in Gi for every i. Hence, any point in
T is covered by at least µ− 2(dµ/2e − 1) ≥ 1 jobs in
G+

1 = G\(G2∪· · ·∪Gdµ/2e), and T ⊆ I(G+
1) = I(G1).

Next we apply a counting argument to show
an averaging alternative of Condition (ii). We set
G′ = G1 ∪ · · · ∪ Gdµ/2e, and note that each time in
T is covered by at most 2dµ/2e distinct jobs in G′

because, as shown above, it is covered by at most
two distinct jobs in each Gi. Also using T ⊆ I(G1) ⊆
· · · ⊆ I(Gdµ/2e), we get

|T | =

∣∣∣∣∣∣
⋃
j∈G′

(T ∩ I(j))

∣∣∣∣∣∣ ≥
∑
j∈G′ |T ∩ I(j)|

2dµ/2e
(3.1)

≥
∑
j∈G′ β`j

2dµ/2e
,

where the last inequality follows from the defini-
tion of a (µ, β)-critical pair.

Now we argue that we can further choose
G?1, . . . , G

?
bµ/4c from the family of job sets

G1, . . . , Gdµ/2e such that Condition (ii) is true.
Suppose there are no such sets, i.e., we have∑
j∈Gi

`j > 4 · |T |/β for dµ/2e−bµ/4c+ 1 ≥ dµ/2e/2

different i. Then the total laxity of G′ is

∑
j∈G′

`j =

dµ/2e∑
i=1

∑
j∈Gi

`j

>

(⌈
µ

2

⌉
−
⌊
µ

4

⌋
+ 1

)
· 4|T |
β
≥ 2dµ/2e · |T |

β
,

which is a contradiction to (3.1). �

The following lemma states that, for arbitrary
disjoint sets of α-tight jobs with a laminar interval
structure, the total size of the covered time intervals
is geometrically increasing.

Lemma 3.3. Let S1, . . . , Sd2m/αe be pairwise disjoint
sets of α-tight jobs such that I(S1) ⊆ · · · ⊆
I(Sd2m/αe). Then we have |I(Sd2m/αe)| ≥ 2|I(S1)|.

Proof. Suppose on the contrary that |I(Sd2m/αe)| <
2|I(S1)|. We will show a contradiction based on the
total contribution of all the jobs to I(Sd2m/αe). By as-
sumption we have |I(Si)| ≥ |I(S1)| > |I(Sd2m/αe)|/2
for all i ∈ {1, . . . , d2m/αe}. Each of these sets Si
consists of α-tight jobs only, i.e., pj > α(dj − rj) for
any j, and thus, a workload of at least α · |I(Si)| ≥
α · |I(Sd2m/αe)|/2 has to be processed within the in-
terval I(Sd2m/αe). There are d2m/αe different such
sets Si, and consequently the total workload that has
to be processed within I(Sd2m/αe) is

C

d2m/αe⋃
i=1

Si

 , I(Sd2m/αe)


>

⌈
2m

α

⌉
·
α · |I(Sd2m/αe)|

2
≥ m · |I(Sd2m/αe)|,

which is a contradiction to Theorem 2.1. �

We are now ready to prove the main theorem.

Proof. [Proof of Theorem 3.1.] Let (G,T) be a
(µ, β)-critical pair. Let G?1, . . . , G

?
bµ/4c be subsets

of G that satisfy the two conditions of Lemma 3.2,
i.e., (i) T ⊆ I(G?1) ⊆ · · · ⊆ I(G?bµ/4c), and (ii)∑
j∈G?

i
`j ≤ 4|T |/β, for all i ∈ {1, . . . , bµ/4c}. The

proof idea is to bound the contribution of certain
subsets G?q , . . . , G

?
bµ/4c to the interval I(G?q) and show

the bound on m by achieving a contradiction to the
load bound in Theorem 2.1.

In the following, we will fix k := dlog 8/βe and
q := d2m/αe · k, and we distinguish two cases. If G?q
does not exist, i.e., q > bµ/4c, we obtain

m ≥ α(µ− 4− 4k)

8k
>
µ− 4− 4 · dlog 8/βe
8 + 8/α · dlog 8/βe

as claimed. Otherwise, G?q does exist, and it follows
from T ⊆ I(G?1) and repeatedly applying Lemma 3.3
that

|I(Gq)| = |I(G?d2m/αe·k)| ≥ 2k|T |.

Now consider any G?i , for i ∈ {1, . . . , bµ/4c}. Using
property (ii) of the subsets, we conclude,

|I(G?q)| ≥ 2k · |T | ≥ 2k · β
4
·
∑
j∈G?

i

`j(3.2)

≥ 2 ·
∑
j∈G?

i

`j ,

where we use k = dlog 8/βe in the last step.
For i ≥ q, the contribution of G?i to I(G?q) can

be bounded from below as follows:

C(G?i , I(G?q)) =
∑
j∈G?

i

max{0, |I(G?q) ∩ I(j)| − `j}

≥
∑
j∈G?

i

(
|I(G?q) ∩ I(j)| − `j

)
≥
∣∣∣∣I(G?i) ∩

⋃
j∈G?

i

I(j)

∣∣∣∣− ∑
j∈G?

i

`j

= |I(G?i) ∩ I(G?q)| −
∑
j∈G?

i

`j .

For i ≥ q, Equation (3.2) and I(G?q) ⊆ I(G?i) imply
C(G?i , I(G?q)) ≥ |I(G?q)|/2.

We now show that m > (bµ/4c − q)/2. Suppose
this is not true. Then bµ/4c ≥ q + 2m, and thus,
we have at least 2m + 1 disjoint sets G?i such that
C(G?i , I(G?q)) ≥ |I(G?q)|/2. Hence,

C

 µ⋃
i=q

G?i

 , I(G?q)

 ≥ (2m+ 1) ·
|I(G?q)|

2

> m · |I(G?q)|.

This is a contradiction to Theorem 2.1. We conclude
by noting that indeed

m ≥ µ− 4− 4 · dlog 8/βe
8 + 8/α · dlog 8/βe

,

using m > (bµ/4c − q)/2 and our choice of q =
d2m/αe · k = d2m/αe · dlog 8/βe. �

We will utilize Theorem 3.1 to construct an
O(logm)-competitive algorithm. To show that this
algorithm is O(1)-competitive for the special cases
(laminar or agreeable instances), we use a slightly
weaker definition of a (µ, β)-critical pair. We replace
the job-individual Condition (ii) in Definition 3.1 by
an averaging condition.

decreasing

in index

j

rj dj

t

1-st budget positive,

charge it and preempt

1-st budget empty, process

2-nd budget positive,
charge it and preempt

2-nd budget empty, process

.

.

.

Figure 1: Illustration of our algorithm. At time t, we consider all relevant jobs in reverse order of their indices. After having

found i active jobs, we check the (i+1)-th budget of the current job. If this budget is not empty, we charge it and preempt/delay

the job; otherwise the job becomes active.

Definition 3.2. Let G be a set of α-tight jobs and
let T be a non-empty finite union of time intervals.
For some µ ∈ N and β ∈ (0, 1), a pair (G,T) is called
weakly (µ, β)-critical if

(i) each t ∈ T is covered by at least µ distinct jobs
in G,

(ii) |T | ≥ β/µ ·
∑
j∈G `j.

It is easy to verify that the proofs above apply
also to weakly (µ, β)-critical pairs. (Indeed, the
only difference is that we do not need the counting
argument to obtain Inequality (3.1) in the proof of
Lemma 3.2.) Hence, we have the following theorem.

Theorem 3.2. If there exists a weakly (µ, β)-critical

pair, then m = Ω
(

µ
log 1/β

)
.

4 Description of the Algorithm

We assume that the optimum number of machines
m is known in advance, and every job is α-tight.
We open m′ machines and will choose m′ later
appropriately as a function of m.

The idea for our algorithm is the following. We
view the laxity of a job as the budget for delaying
it. Whenever a job is delayed for some time, then
we pay this delay from its budget. If the budget is
empty, we must process the job. Greedily decreasing
the budget, as LLF does, fails. Instead, we aim at
balancing the decrease of the budget by taking the
number of currently processing jobs into account. To
that end, we partition the total budget of each job
into m′+1 equal-size smaller budgets, numbered from
1 to m′+1. That is, a job j has m′+1 budgets, each of
size `j/(m

′ + 1). The i-th budget of a job is reserved
for time points when i − 1 other jobs (with larger
index) are being processed, which means that their
corresponding 1-st, 2-nd, · · · , (i− 1)-st budgets have

become 0. Once i − 1 such jobs are already running
and the currently considered job has an empty i-th
budget, then we process this job even if its other
budgets are not empty.

We now describe our algorithm in detail (pseudo-
code can be found in the full version of the paper).
Figure 1 gives an illustration. At a time t, we consider
all jobs with a time window covering t and call them
relevant jobs at t. We must decide which jobs to
process and which jobs to delay/preempt. We call
the jobs that are processed at time t active jobs at
time t and denote them by a1(t), a2(t),

At any computation time t, which we will specify
later, we consider all relevant jobs at t in reverse
order of their indices, i.e., in decreasing order of
release dates. One after the other, we inspect the 1-st
budget of each of these jobs. As long as it is positive,
we do not process the corresponding job and charge
its 1-st budget by the time duration until the next
computation time. Once we find a job whose 1-st
budget is 0, this job becomes the first active job a1(t),
and each of its budgets remains unchanged until the
next computation time. We continue considering jobs
in the reverse order of indices, i.e., we consider jobs
with index smaller than a1(t). Now, we inspect the 2-
nd budget of jobs (instead of the 1-st budget; because
we have one active job). As long as the 2-nd budgets
are non-empty we delay the jobs and charge their 2-
nd budgets; once we find a job with an empty 2-nd
budget, this job becomes the second active job a2(t).
Then we continue with verifying the 3-rd budgets, etc.

The computation times for our algorithm are
release dates, deadlines, and time points at which the
remaining budget of some job becomes 0. Since the
number of budgets per job is m′ + 1, our algorithm
has a polynomial running time if the chosen number
of machines m′ is polynomial.

If we ever find an (m′ + 1)-th active job, we say

that our algorithm fails. We will, however, show that
we can choose m′ such that the algorithm never fails.

5 Analysis of the Algorithm for the General
Case

We prove the following theorem.

Theorem 5.1. Our algorithm is O(logm)-
competitive.

By definition of our algorithm, a job’s total
budget never becomes negative, i.e., it is preempted
no longer than its laxity. So we only have to show
that our algorithm never finds too many active jobs,
i.e., it never finds an (m′+ 1)-th active job. To prove
this, we will assume the contrary and will construct a
critical pair, from whose existence the theorem then
follows by Corollary 3.1.

Lemma 5.1. If our algorithm fails, then there exists
a (µ, 1/µ)-critical pair where µ = m′ + 1.

Proof. As our algorithm fails, there is some time
t? at which an (m′ + 1)-th active job j? is found.
We construct a (µ, 1/µ)-critical pair (F, T) which,
intuitively speaking, is a minimal subset of jobs still
causing the failure. More specifically, we have F =
F1 ∪ · · · ∪ Fµ as well as T = T1 ∪ · · · ∪ Tµ and,
from i = µ down to i = 1, we define Fi as well as
Ti as follows. We set Fµ := {j?} and Tµ := {t |
the µ-th budget of j? is charged at t}. Moreover, for
all i = µ− 1, . . . , 1, we define

Fi := {j | j = ai(t)

for some t ∈ Ti+1 ∪ · · · ∪ Tµ}
and Ti := {t | the i-th budget

of some j ∈ Fi is charged at t}.

We show that (F, T) is indeed a (µ, 1/µ)-critical
pair. We first show that Condition (i) in Defini-
tion 3.1 is satisfied, i.e., each t in T is covered by
µ different jobs in F .

By definition of T , for any t ∈ T there is an i
such that t ∈ Ti. Using the definition of Ti, there
is some job ji ∈ Fi such that its i-th budget is
charged at t. Notice that the i-th budget of ji is
charged at time t because there are i− 1 active jobs
a1(t), . . . , ai−1(t), all with larger index than ji and
time intervals covering t. Thus, there are at least i
jobs j with j ≥ ji that cover t.

We claim that there are at least µ−i different jobs
j with j < ji that cover t. Assume this is true, then
with the claim above, each t in T is indeed covered
by µ different jobs in F .

We now prove the claim by (downward) induction
on i. Clearly it holds for i = µ. Assume the claim is

true for all h = i + 1, . . . , µ. We now show it for i:
According to the definition of Fi, ji is the i-th active
job at some t′ ∈ Tk for k > i, where t < t′ because
the remaining i-th budget of ji at t is still positive,
whereas it becomes 0 at t′. By the definition of Tk,
there also exists a job jk ∈ Fk whose k-th budget is
charged at time t′. We apply the induction hypothesis
for k to obtain that there are µ − k different jobs j
with j < jk < ji covering t′. As j < ji implies
rj ≤ rji and we have t < t′, all these µ − k jobs
also cover t. Similarly jk also satisfies jk < ji and
covers t′, so it covers t, too. To finish the proof of
the claim, we show that there are k − i − 1 different
jobs j with jk < j < ji that cover t. As the k-th
budget of jk is charged at time t′, there must exist
active jobs ai+1(t′), . . . , ak−1(t′), each of which covers
time t′, and we have jk < ah(t′) < ji for all h ∈
{i+ 1, . . . , k − 1}. Again using rah(t′) ≤ rji ≤ t ≤ t′,
all of these k− i− 1 jobs cover time t. Hence in total
there are µ− i different jobs j with j < ji that cover
t. We conclude that each t in T is indeed covered by
µ different jobs in F .

Finally, we show that also the second property of
a (µ, 1/µ)-critical pair is fulfilled by (F, T). Indeed,
|T ∩ I(j)| > `j/µ holds for each j ∈ F : By definition,
there is an i such that j ∈ Fi, and thus j is an i-th
active job at some time t. As the i-th budget (which
initially amounted to `j/µ) is exhausted at time t, it
follows by definition of Ti that |Ti∩I(j)| ≥ `j/µ, and
the lemma follows. �

We are now ready to prove the main theorem.

Proof. [Proof of Theorem 5.1.] We show that our
algorithm never fails, i.e., it never finds an (m′ + 1)-
st active job, when using m′ = O(m logm) machines.
This is sufficient for proving the theorem, as the
algorithm opens m′ machines and processes at any
time the active jobs. All other jobs have a positive
corresponding budget and get preempted/delayed.
No job is preempted/delayed for more time than its
total laxity (budget).

We assume that the algorithm fails, which implies
the existence of a (µ, 1/µ)-critical pair with µ =
m′ + 1 by Lemma 5.1. Now, Corollary 3.1 implies
µ ≤ cm logµ for some constant c. Thus, there exists
a constant c′ such that m′ ≤ c′m logm′, i.e., the
algorithm fails only if m′ ≤ c′m logm′. For m′

sufficiently large, this inequality is not true. Thus,
for m′ = O(m logm) the algorithm does not fail. �

Remark. Careful calculations show that for m =
2, our algorithm opens m′ = 236 machines for
tight jobs (taking α = 4/5). Including loose jobs
(Theorem 2.3) and applying Theorem 2.2 when not

knowning m, our algorithm requires 1044 machines
in total, and is thus 522-competitive for the online
machine minimization problem when m = 2. We
remark that we did not optimize the parameters
that we choose in the proofs. E.g., in the proof of
Theorem 3.1, a more careful analysis could replace
|I(G?d2m/αe·k)| ≥ 2k|T | by |I(G?b2m/αc·k+1)| ≥ 2k|T |,
which already leads to a better ratio of 414 for m = 2.

6 Analysis of the Algorithm for Special Cases

In this section we show that our algorithm is
constant-competitive for two important special cases,
namely, laminar and agreeable instances. In laminar
instances, any two jobs j and j′ with I(j)∩ I(j′) 6= ∅
satisfy I(j) ⊆ I(j′) or I(j′) ⊆ I(j). In agreeable in-
stances, rj < rj′ implies dj ≤ dj′ for any two jobs j
and j′.

Theorem 6.1. For laminar and agreeable instances,
our algorithm is O(1)-competitive.

Recall that we only consider α-tight jobs. As in
the general case, our proof strategy is to construct a
(here: weakly) critical failure pair whenever our algo-
rithm finds a µ-th active job j?. To prove a constant
competitive ratio, however, we use a slightly different
construction in which we drop active jobs with inter-
secting intervals, and obtain a weakly (µ, β)-critical
pair (H,T) where β = 1. This directly implies the
theorem by Corollary 3.11. In fact, the construction is
identical for both special cases. We construct job set
H := H1∪· · ·∪Hµ and time points T := T1∪· · ·∪Tµ
by (downward) inductively defining Hµ := {j?},
Tµ := {t | the µ-th budget of j? is charged at t},

Fi := {j | j = ai(t)

for some t ∈ Ti+1 ∪ · · · ∪ Tµ},
Hi := {j ∈ Fi | there does not exist j′ ∈ Fi

s.t. I(j) ∩ I(j′) 6= ∅ and j′ < j},
and Ti := {t | the i-th budget

of some j ∈ Hi is charged at t},

for all i = µ− 1, . . . , 1. Note that the only difference
from the construction for the general case is that for
each set Fi we additionally maintain a set Hi ⊆ Fi
in which we keep for any two intersecting intervals in
Fi only one. We call (H,T) the failure pair.

To make more concise statements about the
structure of the constructed pair, we introduce the

1We are dropping constants by writing m = Ω(µ/ log(1/β))

in Theorem 3.2. The logarithm is actually taken over 8/β
instead of 1/β (see Equation (3.2)), and thus, β = 1 does not

cause a problem in computation.

notation S1 ≺ S2 (or equivalently, S2 � S1) for two
sets of jobs S1 and S2. Specifically, this means that
for every job j2 ∈ S2 there exists a job j1 ∈ S1 such
that I(j1)∩I(j2) 6= ∅ and j1 < j2. Note that ≺ is not
an order as it does not necessarily obey transitivity.

The following structural lemma is true for both
special cases; see the full version of the paper for the
individual proofs.

Lemma 6.1. Consider a laminar or agreeable in-
stance, and let (H,T) be a failure pair. Then the
following statements are true:

(i) For all Hi, Hi′ with i < i′, we have Hi � Hi′ .

(ii) For all Hi, we have T ⊆ I(Hi).

With Lemma 6.1, we can prove Theorem 6.1
without using any further structural information.

Proof. [Proof of Theorem 6.1.] We show that our
algorithm never finds a µ-th active job if µ − 1 =
m′ = cm for a sufficiently large constant c. To
this end, assume the contrary and let (H,T) be
the corresponding failure pair, which we claim to be
weakly (µ, 1)-critical. Given this claim, the theorem
directly follows from Theorem 3.2.

The first property of a weakly (µ, 1)-critical pair,
that is, that each t ∈ T is covered by µ different jobs
in H, is easy to see: By Lemma 6.1 (ii), there is a
job in each Hi that covers t. Also, all these jobs are
distinct: If there exists a job j ∈ Hi ∩ Hi′ where
i < i′, Lemma 6.1 (i) implies the existence of j′ ∈ Hi′

with j′ < j and I(j) ∩ I(j′) 6= ∅. This would be a
contradiction to the construction of (H,T) as j would
not be taken over from Fi′ to Hi′ because j′ ∈ Hi′ ,
I(j) ∩ I(j′) 6= ∅, and j′ < j.

As an intermediate step, we claim that T1, . . . , Tµ
are pairwise disjoint. To see this, suppose there exists
some t ∈ Ti ∩ Ti′ where i < i′. By definition of Ti,
there exists a job j ∈ Hi such that the i-th budget of
j is charged at t. Similarly, there also exists some job
whose i′-th budget is charged at t, implying that at
time t there exists an i-th active job ai(t) as i < i′.
We distinguish three cases, each of them yielding a
contradiction:

Case 1: We have ai(t) < j. Note that ai(t) ∈ Fi by
definition of Fi. As t ∈ I(j) ∩ I(ai(t)) 6= ∅,
we get a contradiction as, by definition of
Hi, it does not include j.

Case 2: We have ai(t) = j. Then the i-th budget
of j is already exhausted at t, which is a
contradiction to the fact that it is charged
at t.

Case 3: We have ai(t) > j. Recall that the algo-
rithm considers jobs one by one in decreas-
ing order of indices. After it found an i-th
active job ai(t) at t, it will never check the
i-th budget of jobs of lower indices. Hence
the i-th budget of job j < ai(t) cannot be
charged at t.

It remains to show the second property of
a weakly (µ, 1)-critical pair, i.e., we have |T | ≥∑
j∈F `j/µ. For each Hi, every j ∈ Hi is an i-th ac-

tive job at some time t and thus its i-th budget is ex-
hausted at t. Consequently, there are times at which
this budget is charged, implying |Ti ∩ I(j)| ≥ `j/µ.
Using that Hi does not contain distinct jobs j and j′

with I(j) ∩ I(j′) 6= ∅ (by definition), we obtain

|Ti| =
∑
j∈Hi

|Ti ∩ I(j)| ≥
∑
j∈Hi

`j
µ
.

As T1, . . . , Tµ are pairwise disjoint, by summing up
these inequalities for all Hi, we get:

|T | =
µ∑
i=1

|Ti| ≥
µ∑
i=1

∑
j∈Hi

`j
µ

=
∑
j∈H

`j
µ
,

which concludes the proof. �

Remark. Careful calculations show that, when
restricting to only α-tight jobs, the algorithm is
(d8/αe + 4)-competitive for laminar instances, and
(d16/αe + 8)-competitive for agreeable instances.
Note that the factor of two between the ratios is
due to that fact that for laminar instances the Hi’s
we derive already satisfies a laminar structure, i.e.,
I(H1) ⊆ I(H2) ⊆ · · · ⊆ I(Hµ), while for agreeable in-
stances we still need to apply Lemma 3.1 to get such a
structure. When additionally handling loose jobs by
EDF (Theorem 2.3), we derive a 24-competitive algo-
rithm for laminar instances and a 44-competitive al-
gorithm for agreeable instances if the offline optimum
m is known (by taking α = 1/2). If m is not known,
using Theorem 2.2 we derive a 96-competitive algo-
rithm for laminar instances and a 176-competitive al-
gorithm for agreeable instances.

7 Conclusions

We presented an improved online algorithm for the
preemptive machine minimization problem. Our gen-
eral O(logm)-competitive algorithm yields a compet-
itive ratio of O(1) for several special cases, such as,
laminar and agreeable instances as well as instances
where the optimum valuem is bounded by a constant.

Our methodology is based on a new lower bound
construction which may be of independent interest.

We cannot rule out that a different construction
of a failure set in the analysis may give a (µ, β)-
critical pair with a constant β, which would prove
directly a constant competitive ratio. Indeed, we
show how to achieve this for laminar and agreeable
instances. The results on these special cases verify the
applicability of our general method, but we mention
that algorithm and analysis are not optimized to give
best possible constants.

References

[1] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling
to manage energy and temperature. J. ACM, 54(1),
2007.

[2] A. Borodin and R. El-Yaniv. Online Computation
and Competitive Analysis. Cambridge University
Press, 1998.

[3] M. Chrobak and C. Kenyon-Mathieu. SIGACT
news online algorithms Column 10: Competitiveness
via doubling. SIGACT News, 37(4):115–126, 2006.

[4] N. R. Devanur, K. Makarychev, D. Panigrahi, and
G. Yaroslavtsev. Online algorithms for machine
minimization. CoRR, abs/1403.0486, 2014.

[5] W. A. Horn. Some simple scheduling algorithms.
Naval Research Logistics Quarterly, 21(1):177–185,
1974.

[6] M.-J. Kao, J.-J. Chen, I. Rutter, and D. Wag-
ner. Competitive design and analysis for machine-
minimizing job scheduling problem. In Proc. of
ISAAC, pages 75–84, 2012.

[7] A. J. Kleywegt, V. S. Nori, M. W. P. Savelsbergh,
and C. A. Tovey. Online resource minimization. In
Proc. of SODA, pages 576–585, 1999.

[8] T. W. Lam and K.-K. To. Trade-offs between speed
and processor in hard-deadline scheduling. In Proc.
of SODA, pages 623–632, 1999.

[9] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Op-
timal time-critical scheduling via resource augmen-
tation. In Proc. of STOC, pages 140–149, 1997.

[10] K. Pruhs. In Collection of Open Problems in
Scheduling, Dagstuhl Scheduling Seminar, 2010.

[11] B. Saha. Renting a cloud. In Proc. of FSTTCS,
pages 437–448, 2013.

[12] Y. Shi and D. Ye. Online bin packing with arbitrary
release times. Theor. Comput. Sci., 390(1):110–119,
2008.

