
Polynomial-Time Exact Schedulability Tests
for Harmonic Real-Time Tasks

Vincenzo Bonifaci∗, Alberto Marchetti-Spaccamela†, Nicole Megow‡, Andreas Wiese§
∗Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” (IASI-CNR), Rome, Italy

Email: vincenzo.bonifaci@iasi.cnr.it
†Sapienza University of Rome, Italy. Email: alberto.marchetti@dis.uniroma1.it
‡Technische Universität Berlin, Germany. Email: nmegow@math.tu-berlin.de

§Max-Planck-Institut für Informatik, Saarbrücken, Germany. Email: awiese@mpi-inf.mpg.de

Abstract—We study the preemptive scheduling of real-time
sporadic tasks on a uniprocessor. We consider both fixed priority
(FP) scheduling as well as dynamic priority scheduling by the
Earliest Deadline First (EDF) algorithm. We investigate the prob-
lems of testing schedulability and computing the response time of
tasks. Generally these problems are known to be computationally
intractable for task systems with constrained deadlines. In this
paper, we focus on the particular case of task systems with
harmonic period lengths, meaning that the periods of the tasks
pairwise divide each other. This is a special case of practical
relevance.

We present provably efficient exact algorithms for constrained-
deadline task systems with harmonic periods. In particular, we
provide an exact polynomial-time algorithm for computing the
response time of a task in a system with an arbitrary fixed
priority order. This also implies an exact FP-schedulability test.
For dynamic priority scheduling, we show how to test EDF-
schedulability in polynomial time. Additionally, we give a very
simple EDF-schedulability test for the simpler case where relative
deadlines and periods are jointly harmonic.

I. INTRODUCTION

The sporadic task model [29] is a widely used formal model
for representing recurrent real-time task systems. We consider
the preemptive uniprocessor scheduling of sporadic tasks with
harmonic period lengths, which means that the periods of
the tasks divide each other. Harmonic periods occur in a
number of applications domains [12], [30], [34] and there is
experimental evidence that they may allow a larger processor
utilization [9], [16], [23]. In this paper, we formally prove
that constrained-deadline1 task systems with harmonic periods
admit polynomial-time exact schedulability tests.

Schedulability analysis is used to a priori assess the behavior
of a real-time system. Given a set of real-time tasks, schedu-
lability analysis determines whether this set can be guaranteed
to always meet the deadlines at runtime. A schedulability test
is sufficient if all task sets deemed to be schedulable by the
test are in fact schedulable. Similarly, a schedulability test is
necessary if all task sets deemed to be unschedulable by the
test are in fact unschedulable. Schedulability tests that are both
sufficient and necessary are referred to as exact.

1A constrained-deadline task set is such that the relative deadline of each
task does not exceed its period length. When each relative deadline is equal
to the corresponding period length, the task set is called implicit-deadline.

In this paper, we consider both fixed priority and dynamic
scheduling. In fixed priority (FP) scheduling an arbitrary
priority ordering of all tasks is specified. Jobs are scheduled
preemptively according to this order. That is, at the arrival of
a job of a higher priority task, any executing job of a lower
priority task is preempted. Among all possible priority orders,
some well-studied ones are Rate Monotonic (RM), where
tasks are ordered non-decreasingly by their period lengths,
and Deadline Monotonic (DM), where tasks are ordered non-
decreasingly by their relative deadlines.

A well-known method to perform schedulability analysis
for fixed priority scheduling is to compute the worst-case
response time of each task. This is known as Response-Time
Analysis (RTA) [2], [22], [37]. The response time of a task
is the maximum amount of time that may elapse between
the arrival of a job of the task and its completion. Known
methods for computing the response time are iterative and
not known to be polynomial-time in the input size. They
are typically unsuitable for large instances [22]. Indeed, it is
known that computing the response time for RM-scheduling is
NP-hard [13]. Therefore, it is unlikely that exact polynomial-
time RTA-based schedulability tests exist.

In the case of dynamic scheduling we consider the Earliest
Deadline First (EDF) algorithm, which schedules at any time
an available job whose absolute deadline is closest, possibly
preempting a running job with later deadline. EDF is an
optimal scheduling algorithm for a set of preemptive jobs
on a single processor [11], [28], meaning that it constructs
a feasible schedule (a schedule in which all jobs meet their
deadlines) whenever a feasible schedule exists. A well-known
method to perform EDF-schedulability analysis is based on
the demand bound function [6]: roughly speaking, the total
processing demand is computed for certain time intervals
and compared with the available processing capacity in those
intervals. The running time of the test depends on the number
of time intervals to be considered; no polynomial-time bound
on the complexity of such an approach is known. Indeed,
the problem of testing EDF-schedulability has been shown to
be coNP-hard even in the case of constrained-deadline task
sets [15]; therefore, it is unlikely that a polynomial-time exact
EDF-schedulability test exists.

It is noteworthy that the two above-mentioned intractability

1

results (NP-hardness of response-time computation [13] and
coNP-hardness of testing EDF-schedulability [15]) heavily rely
on the fact that the period lengths of an instance can have
a complicated algebraic structure. Therefore, for solving the
two problems above exactly, one has to cope with complex
subproblems from the domain of algorithmic number theory.
In fact, the two latter results hinge on the NP-hard Directed
Diophantine Approximation problem [14]. However, in prac-
tical applications the structure of the arising period lengths
might be much simpler than in a possible theoretical worst-
case scenario.

Therefore, it is of interest to determine under which condi-
tions polynomial-time exact schedulability tests are possible.
Despite all research effort, only for very special cases a posi-
tive answer is known. A remarkable result has been obtained
by Liu and Layland in 1973 [28], who showed that in the case
of implicit-deadline task systems an exact schedulability test
for EDF systems can be easily performed by verifying whether
the total utilization of the task set is less than or equal to 1.

The class of task systems with harmonic periods is appeal-
ing from a practical point of view, but its power is not well
understood from a theoretical point of view. In the specific
case of n implicit-deadline tasks with harmonic periods, it is
known2 that a sufficient condition for RM-schedulability is that
the total utilization of the task set is at most 1; whereas for
non-harmonic periods, only a utilization bound of n(21/n−1)
(which approaches ln 2 ≈ 0.693, for large n) yields a sufficient
condition [28]. Research effort has been dedicated to extend
the result to other system models. For example, in [23] the
utilization bounds of [28] have been generalized using the
notion of harmonic chains. In [35] the authors propose to
transform the periods of an implicit-deadline task set to make
them nearly harmonic. However, in the case of harmonic,
constrained-deadline task sets, the complexity of known exact
schedulability tests is only pseudopolynomial.

A. This paper

We study preemptive real-time schedulability tests for spo-
radic task sets with constrained deadlines on a uniprocessor,
under the assumption that the period lengths of the tasks are
harmonic, that is, they pairwise divide each other. As we
already observed, harmonic periods are relevant in a number
of applications, such as avionics (see, for example, [30]).
We show that such task sets admit exact polynomial time
tests, thus bypassing the previously discussed computational
hardness results.

We first consider fixed priority scheduling. We present an
exact polynomial-time algorithm which computes the response
time of a task of a given task set for an arbitrary priority
ordering (Section III). A key difficulty when computing the
response time is that the inequality for upper bounding the
response time (see Inequality (2)) might be satisfied only at
some isolated points in time, and such points may be hard

2This result seems to be known as folklore, see, for example, the sur-
veys [4], [25], but it may be attributed to [24].

to find. However, in the case of harmonic period lengths we
prove that if the inequality holds at time point t, then it also
holds at any time after t that is a multiple of some period
length pj (see Figure 1 and Lemma 2). This allows us to find
the response time with a binary search type procedure having
an overall complexity O(n · logP), where P is the largest
period length. As a corollary, we obtain an exact polynomial-
time test that decides whether a set of tasks with harmonic
period lengths is FP-schedulable under a given ordering.

We then consider dynamic scheduling algorithms. Our main
result is a polynomial-time algorithm that tests whether the
given set of tasks is feasible on one processor (Section IV-B).
It is known that testing uniprocessor feasibility is equivalent to
testing whether there is a feasible schedule for the synchronous
arrival sequence of jobs [4]. Intuitively, one might want to
simulate a suitable scheduling algorithm (such as EDF) in
order to verify whether a schedule exists for this job sequence.
However, this approach would be inefficient. Instead, we
construct a schedule, specially designed for the synchronous
arrival sequence, that can be described compactly. Intuitively,
it delays the execution of each job up to a point where any
further delay would cause some job in the system to miss
its deadline. We fix the delays of jobs in increasing order of
(harmonic) period length, and then the delay for each job of
the same task is identical. In a sense, the resulting schedule
is a “reversed” RM-schedule (see Figure 2). Even though
this strategy might seem counterintuitive, we show that this
schedule is optimal, meaning that all jobs meet their deadlines
if and only if the task system is feasible. Most importantly, the
schedule can be described compactly and we can construct it
(implicitly) in polynomial time.

We round up our results by giving a simpler EDF-
schedulability test for the case that all period lengths and
relative deadlines of the task system are jointly harmonic
(Section IV-A).

B. Related work

1) Fixed priority: Many known results for fixed priority
systems assume that priorities are either in rate-monotonic
priority order or in deadline-monotonic order. If the deadline
of each task equals its period, then the two orders coincide
and the seminal results of Serlin [33] and Liu and Layland
[28] showed that for synchronous tasks (i.e., with a common
release date), the RM (and DM) ordering is optimal. Liu and
Layland [28] also provided a simple, sufficient, utilization-
based schedulability test for implicit-deadline tasks. If the
task set has constrained deadlines, then it is known that DM
is optimal among the family of fixed priority preemptive
algorithms for scheduling on a uniprocessor [27].

Exact schedulability tests have been proposed by Joseph and
Pandya [22] and Audsley et al. [2]. In [24] the authors propose
an alternative method of determining exact schedulability
conditions, which also allows an average case analysis.

A significant research effort has been devoted to improve
the running time of exact schedulability tests or to find good
approximations of the response time that allow to derive

2

sufficient schedulability tests or to extend known results to
more general system models. We refer, for example, to [3],
[7], [8], [10], [19], [36] and references therein. Addition-
ally, polynomial-time approximation schemes (PTAS) for DM-
schedulability have been proposed in [17], [31] that – in some
cases – are based on approximating the response time to any
degree of accuracy.

The power of harmonic task systems or those that come
close to them has been supported in [9], [16], [23]. The
authors of [23] propose the harmonic chain method, which
extends the Liu and Layland bounds by determining and
exploiting harmonic relationships among periods. Their ex-
periments give evidence that (nearly) harmonic task sets can
utilize the processor more efficiently than arbitrary task sets.
In [19] the authors study schedulability methods that are based
on transforming a given task set T into another task set
T′ with harmonic periods, whose schedulability implies the
schedulability of T. In [32] it is shown that the assumption of
harmonic periods yields more accurate upper bounds on the
response times.

One result that gives a formal proof of the power of har-
monic periods is the aforementioned exact RM-schedulability
test for implicit-deadline uniprocessor task systems, which
requires only to verify that the total utilization of the task
set is at most 1. This result is useful also in a multiprocessor
environment. Consider partitioned RM-scheduling, where the
task set is divided into subsets, one for each processor, and
then RM-scheduling is applied on each individual processor.
In case of implicit deadlines, partitioned scheduling can be
reduced to a makespan minimization problem on multiple pro-
cessors. Then the above utilization-based test, combined with
a PTAS [20] or FPTAS [21] for the makespan minimization
problem, gives nearly exact tests for partitioned multiprocessor
RM-schedulability.

2) EDF: We already observed that existing results on exact
schedulability analysis for EDF need to compute the demand
bound function of the task set at several appropriate time
intervals. Given the importance of the problem, there has been
a significant effort in order to reduce the number of time inter-
vals to be checked while guaranteeing a good approximation
of the demand function. Many such sufficient schedulability
tests have been proposed; we refer, for example, to [5], [6],
[11], [26], [38] and references therein. Moreover, a fully
polynomial-time approximation scheme has been proposed by
Albers and Slomka [1]. However, the running time of known
exact algorithms is not satisfactory; for example, in [38] it has
been observed that “the significant effort required to perform
the exact schedulability test restricts the use of EDF in realistic
systems; hence, the EDF algorithm has not been used as
widely as the fixed priority algorithms in commercial realtime
systems”.

II. SYSTEM MODEL AND NOTATION

We consider a hard real-time system comprising a set T =
{τ1, τ2, . . . , τn} of independent real-time sporadic tasks, each
task consisting of a possibly infinite sequence of jobs which

must be completed before their deadlines. Jobs of a sporadic
task τj may arrive irregularly, but have a minimum inter-arrival
time, also known as period. Each task τj is defined by a tuple
(cj , dj , pj), consisting of a worst-case execution time cj , a
period pj , and a relative deadline dj , with cj ≤ dj ≤ pj
(constrained deadlines). We refer to [4] for the precise se-
mantics of the model. We assume that all input parameters
are integral and positive.

We restrict ourselves to task sets with harmonic periods,
which means that for all i, j = 1, . . . , n, either pi | pj (pi
divides pj) or pj | pi (pj divides pi).

In our analysis, we will use two further assumptions that
come without loss of generality:

1) the execution requirement of each job of task τj always
equals its worst-case execution time;

2) the job sequence is the synchronous arrival sequence
(SAS), that is, the i-th job of each task τj is released
at time (i− 1)pj and due at time (i− 1)pj + dj .

We remark that both assumptions are without loss of gen-
erality: the first one, because we only consider predictable
scheduling algorithms (in the sense of Ha and Liu [18]); the
second one, because it is known (see for example [4, Lemma
28.9, 28.10]) that the SAS is the worst-case arrival sequence
for determining response times and EDF-schedulability.

The hyperperiod P of task set T is defined as the least
common multiple of the period lengths of the tasks in T; since
periods are harmonic, we have P = maxni=1 pi.

The utilization of a task τi is the quantity ci/pi. The
utilization U(T) of task set T is

∑n
i=1 ci/pi. If U(T) > 1, then

there are job sequences of T that cannot be feasibly scheduled
by any algorithm; hence, in the remainder of the paper we will
use the assumption U(T) ≤ 1.

III. FIXED PRIORITY SCHEDULING

Given an arbitrary fixed priority order (a total ordering of
all tasks), in this section we assume that the tasks are indexed
according to this priority order, that is, a task τi has higher
priority than task τj if and only if i < j. In a given schedule
according to the given priority order, the response time of a
job is the time that elapses between its release time and its
completion time. The response time rj of a task τj is the
maximum response time that a job of this task may incur.

Consider a task system T with a given fixed priority order.
Recall that without loss of generality we can consider the
synchronous arrival sequence (SAS) of jobs. In the SAS, the
response time of the first job of task τj is the largest among all
the jobs of τj [4], [22], [37]. Hence, in order to check whether
the given system is feasible, it is sufficient to compute for each
task τj the response time, rj , of the first job of τj in the SAS,
and to determine whether rj ≤ dj for each j = 1, . . . , n.

It is known that rj is the minimum t > 0 that satisfies the
following equality:

cj +
∑
i<j

⌈
t

pi

⌉
· ci = t. (1)

3

(k − 1)pj� k · pj�

rn

(a− 1)pj a · pj

? ? ??

Fig. 1. An illustration of Lemma 2. Condition (2) is satisfied (respectively,
not satisfied) at the blue (resp., red) time points. The condition may or may
not be satisfied at the time points marked by question marks. (Red points are
on the left of rn; blue points are on the right of rn and are marked by an
upward arrow.)

In the sequel we also use the following equivalent defini-
tion: rj is the minimum t > 0 that satisfies the following
inequality:

cj +
∑
i<j

⌈
t

pi

⌉
· ci ≤ t. (2)

We now show how to compute the response time of a
task in polynomial time if the periods are harmonic. Since
the response time depends only on the schedule of higher-
priority tasks (see Condition (2)), we can assume without loss
of generality that we are interested in the response time of
the task with lowest priority, task τn. Firstly, we observe that
when periods are harmonic, the hyperperiod of the tasks in
T \ {τn} is certainly not larger than P := maxni=1 pi, and
thus, the schedule for these tasks is the same in each interval
[(q − 1)P, qP) for any q ∈ N. When U(T) ≤ 1, it is easy to
show that the response time of τn is not larger than P · cn.
We give a short proof for completeness.

Lemma 1. If U(T) ≤ 1, then Condition (2) is satisfied with
j = n and t = P · cn and, therefore, rn ≤ P · cn.

Proof: The left hand side of (2) with j = n and t = P ·cn
can be bounded as follows:

cn +
∑
i<n

⌈
Pcn
pi

⌉
· ci = cn +

∑
i<n

ci
pi
· Pcn ≤

∑
i≤n

ci
pi
· Pcn

≤ Pcn,

where the equality uses the fact that periods are harmonic, the
first inequality uses the fact that P/pn ≥ 1 and cn ≥ 1, and
the second inequality uses U(T) ≤ 1.

The following lemma is crucial for our approach to comput-
ing the response time. It allows to reduce the search to release
intervals, that is, the intervals between two consecutive job
arrivals of the same task. Informally speaking, the lemma says
the following: Suppose the response time rn lies in the release
interval I of some task τj′ , and let pj be the largest period
that is less than pj′ . Then Condition (2) is also satisfied for
every integer multiple of pj equal or larger than rn within I .
Thus, rn is at most the smallest such multiple of pj . See Figure
1 for an illustration of the lemma.

Lemma 2. Let T be a task system with total utilization at
most 1. Assume rn ∈ ((q − 1) · pj′ , q · pj′] for some q ∈ N,
and let pj be the largest period that is less than pj′ . If all
periods are harmonic, then t(a) := a·pj satisfies Condition (2)
for any a ∈ N such that t(a) ∈ [rn, q · pj′].

Proof: Consider some time point t(a) = a · pj , a ∈ N,
such that rn ≤ a · pj ≤ q · pj′ . We need to show that

cn +
∑
i<n

⌈
a · pj
pi

⌉
· ci ≤ a · pj .

First, we observe that for all indices i < n with pi > pj
we have that da · pj/pie = drn/pie. The reason is that with
harmonic periods and by definition, a · pj and rn are within
the same release interval ((q− 1) · pj′ , q · pj′] of task τj′ , and
thus within the same release interval ((q′ − 1) · pi, q′ · pi] of
any task τi with i < n and pi > pj (for a suitable value q′).
Furthermore, for all i < n with pi ≤ pj the ratio a · pj/pi is
integral since pi | pj . Hence, the left-hand side of inequality (2)
evaluated at t(a) equals

cn +
∑
i<n

⌈
a · pj
pi

⌉
· ci

= cn +
∑
i<n

pi>pj

⌈
rn
pi

⌉
· ci +

∑
i<n

pi≤pj

a · pj
pi
· ci

≤ cn +
∑
i<n

⌈
rn
pi

⌉
· ci +

∑
i<n

pi≤pj

a · pj − rn
pi

· ci

=

(
cn +

∑
i<n

⌈
rn
pi

⌉
· ci
)

+ (a · pj − rn) ·
∑
i<n

pi≤pj

ci
pi

≤ rn + (a · pj − rn) = a · pj .
The last inequality holds since by definition inequality (2)
is satisfied for t = rn, and due to the utilization
bound

∑n
i=1 ci/pi ≤ 1.

The lemma suggests the following algorithm for computing
the response time rn. By Lemma 1, we know that rn lies in
the interval (LB,UB] with LB = 0 and UB = P · cn. Using
Lemma 2, we iteratively reduce the search interval (LB,UB].
Beginning with the largest period P , we find the least integer
a ∈ (LB/P,UB/P] such that Condition (2) is satisfied at a ·
P . By Lemma 2 we can increase LB to (a−1) ·P and reduce
UB to a · P . We continue with the longest period length that
is shorter than P and so on, until the shortest period has been
considered. At this point we have UB − LB = minn−1i=1 pi
and we are able to determine rn exactly. More formally, the
description is in given in Algorithm 1.

Theorem 1. Algorithm 1 correctly computes the response
time rn of task τn in time O(n log n+ n logP).

Proof: The correctness of the algorithm hinges on Lem-
mata 1 and 2. First of all, note that since U(T) ≤ 1 then
Lemma 1 implies rn ≤ P · cn. Then the for loop of
the algorithm maintains the invariant that the values of LB

4

Algorithm 1 Exact response time computation
Input: A constrained-deadline sporadic task system T with

harmonic periods s.t. U(T) ≤ 1 and an FP ordering
(τ1, τ2, . . . , τn) of the tasks.

Output: Response time rn.

1: Let π : {1, 2, . . . , n − 1} → {1, 2, . . . , n − 1} be a
permutation that orders tasks by non-increasing period
lengths, i.e., i < j implies pπ(i) ≥ pπ(j).

2: LB ← 0
3: UB ← cn · P
4: for i← 1 to n− 1 do
5: Use binary search to find the least integer a such that a

is in the interval (LB/pπ(i), UB/pπ(i)] and satisfies (2).
6: LB ← (a− 1) · pπ(i)
7: UB ← a · pπ(i)
8: end for

9: rn ← cn +
∑
i<n

⌈
UB
pi

⌉
· ci

10: return rn

and UB are such that LB < rn ≤ UB; more precisely,
Condition (2) is guaranteed to be violated for t = LB and
to be satisfied for t = UB. This is obviously true when LB is
initialized to 0 and, by Lemma 1, when UB = cn ·P . Then, at
each iteration i, LB is updated to a value (a−1) ·pπ(i) which
does not satisfy (2), due to the minimality of a. Lemma 2,
on the other hand, ensures that the updated UB does satisfy
Condition (2). Notice also that, at the end of each iteration
of the for loop, Condition (2) is satisfied by t = UB and
not satisfied by t = LB. Since the periods are harmonic and
thus pπ(i) always divides UB, the binary search procedure
is successful at each iteration, because UB/pπ(i) is always a
possible target value of the binary search.

At the end of the for loop, the interval (LB,UB] is such
that UB − LB = minn−1i=1 pi. Therefore, the terms drn/pie
and dUB/pie are equal for each i < n. This implies that

rn = cn +
∑
i<n

⌈
rn
pi

⌉
· ci = cn +

∑
i<n

⌈
UB

pi

⌉
· ci,

which justifies the last step of the algorithm.
Concerning the running time, observe that apart from the

initial ordering step (Step 1, which requires time O(n log n)),
it is dominated by the overall cost of checking Condition
(2) in the main loop. Since the cost of checking Condition
(2) is O(n), it follows that the overall cost of Algorithm 1
amounts to a number of arithmetic operations that is bounded
by O(n log n + n · nT), where nT denotes the total number
of times that Condition (2) is tested. We now show that
nT = log(cn · P).

First observe that when i = 1 the algorithm performs a
binary search for a multiple of P between LB = 0 and
UB = cnP . Hence, in the worst case, there are at most
log(cnP/P) = log cn points to be checked. When i > 1, in
the i-th iteration of the main loop the algorithm runs a binary

search procedure which tests integer multiples of the current
period pπ(i) on an interval of length at most UB − LB =
pπ(i−1). This implies that condition (2) is tested at most
log(pπ(i−1)/pπ(i)) times. Summing across i, we obtain that

nT = log cn +

n∑
i=2

log(pπ(i−1)/pπ(i))

≤ log cn + logP = log(cn · P).

Therefore, the running time of Algorithm 1 is bounded
by O(n log n+ n · log(cn · P)) = O(n log n+ n logP) (since
cn ≤ pn ≤ P).

To test the schedulability of a given fixed priority order,
it suffices to verify whether the response time of every task
satisfies ri ≤ di. Thus, by Theorem 1 we can simply execute
Algorithm 1 for every task.

Corollary 1. There is a polynomial time algorithm that, on
input a constrained-deadline harmonic task set T and a fixed
priority order, decides whether T is FP-schedulable under the
given order on one processor.

IV. DYNAMIC SCHEDULING – EDF-SCHEDULABILITY

First, we present a simple and fast schedulability test for the
special case when deadlines and periods are jointly harmonic.
Then we present our main result: a polynomial-time algorithm
for testing EDF-schedulability of tasks with harmonic periods.

We will need some more job-specific notation: Let i(j)
denote the i-th job of task τj . We denote its arrival date as ai(j)
and its absolute deadline as d̄i(j) := ai(j) + dj . If the task to
which a job belongs is clear from the context or irrelevant,
then we omit the reference to the task index. Vice versa, we
let τ(i) denote the task that released job i; we also say that
τ(i) owns job i.

A. A test for periods and deadlines that are jointly harmonic

In this subsection we consider task systems in which the
deadlines and periods of the tasks are jointly harmonic, that
is, for all xi, xj ∈ {d1, . . . , dn, p1, . . . , pn}, either xi|xj or
xj |xi. We say such a task system is fully harmonic.

Definition 1. Two jobs i and k are a strictly crossing pair if
ai < ak < d̄i < d̄k.

Lemma 3. There is no strictly crossing pair of jobs in the
synchronous arrival sequence of a fully harmonic constrained-
deadline task system.

Proof: We give a proof by contradiction. Suppose there
exist two jobs i and k with ai < ak < d̄i < d̄k. First observe
that the periods of the tasks owning jobs i and k satisfy pτ(k) <
pτ(i), because otherwise pτ(i) | pτ(k) and thus the arrival of i
would coincide with the arrival of k, a contradiction to ai <
ak. By the same argument, we see that pτ(k) | ai, and at ai
there is released another job k′ 6= k of task τ(k) which must
have its absolute deadline at or before ak (recall that deadlines
are constrained) and thus before d̄i. Hence, pτ(k) ≤ d̄i−ai =
dτ(i), which implies pτ(k) | d̄i, because pτ(k) | dτ(i) (periods
and deadlines are jointly harmonic) and pτ(k) | ai (see above).

5

In a synchronous arrival sequence, jobs are released as early
as possible and thus jobs of task τ(k) are released at every
integer multiple of pτ(k); in particular, there arrives a job k′′

of task τ(k) at time d̄i, and thus, k itself must have finished
by that time, i.e., d̄k ≤ d̄i, which gives a contradiction and
concludes the proof.

Lemma 4. Consider the synchronous arrival sequence of a
fully harmonic task system that is not EDF-schedulable, and
let τj be the task with the earliest deadline miss. Then EDF
fails at time dj , the absolute deadline of τj’s first job.

Proof: Let i(j) be the first job of task τj that misses its
deadline d̄i in an EDF schedule. Recall that ai is the arrival
time of job i.

We determine the workload that EDF assigns to the inter-
val [ai, d̄i] and which delays the processing of i. We first
observe that only jobs with an arrival time equal or larger
than ai (but before d̄i) can contribute to this workload. The
reason is that by Lemma 3, jobs arriving before ai have their
absolute deadline before ai or after d̄i, and in both cases they
do not delay the execution of i in the EDF schedule. Fur-
thermore, the jobs released after ai with a deadline before d̄i
have, by the same reasoning as in the proof of Lemma 3, a
period strictly less than pj : indeed, if a job k had ak > ai and
d̄k ≤ d̄i, then pτ(k) < pj , otherwise pj | pτ(k) and the arrival
of i would coincide with ak. We conclude that the workload
that delays the processing of job i in its time window [ai, d̄i]
is only due to
• jobs with arrival time ai, and
• jobs with arrival time in (ai, d̄i) that belong to tasks with

period less than pj .
In a synchronous arrival sequence, these are exactly the same
jobs that delay the first job released by task τj . Thus, if i(j)
fails to complete, then the first job released by τj also fails to
complete within its time interval [0, dj], which concludes the
proof.

Algorithm 2 EDF-schedulability test for fully harmonic tasks
Input: A task system T with harmonic periods and deadlines.
Output: YES/NO-decision about T being EDF-schedulable.

1: for τi ∈ T do
2: if

∑
τk∈T b(di + pk − dk)/pkc · ck > di then

3: return NO
4: end if
5: end for
6: return YES

Theorem 2. There is a polynomial-time algorithm that decides
whether a fully harmonic constrained-deadline task set is EDF-
schedulable on one processor.

Proof: A constrained-deadline task system is EDF-
schedulable if and only if its synchronous arrival sequence
is EDF-schedulable [4, Lemma 28.9]. For such an arrival
sequence, Lemma 4 states that it is sufficient to test for each

task τi the deadline of its first occurrence, that is, the time di.
Thus, our algorithm (Algorithm 2) does the following: for
i = 1, . . . , n, test if EDF fails at time di. By [5, Lemma 4.2]
this can be done by evaluating the demand bound function at
time t = di, that is, we check if∑

τk∈T

⌊
di + pk − dk

pk

⌋
· ck ≤ di . (3)

If all such tests are satisfied, then T is EDF-schedulable;
otherwise, we have found a time t by which EDF fails.

Regarding the running time, observe that for each i =
1, 2, . . . , n, Condition (3) can be tested in time linear in the
input size. Therefore, the overall complexity of the test is
quadratic.

B. A polynomial-time test for harmonic periods

Consider a task system T with harmonic periods and ar-
bitrary (but constrained) deadlines. We present a polynomial
time algorithm which tests whether for every job sequence of
T a feasible uniprocessor schedule exists (and thus whether
the task set is EDF-schedulable [11], [28]).

Recall from Section II that it is sufficient to verify the
schedulability of a synchronous arrival sequence in which
all jobs attain their WCETs. Without loss of generality, as-
sume that the tasks in T = {τ1, τ2, . . . , τn} are sorted non-
decreasingly by period length, that is, pj ≤ pj′ for any j, j′

with j < j′. To prove the result we will proceed in three steps.
Namely,

1) We define a (non-EDF) procrast schedule S for the
synchronous arrival sequence of T; S is implicitly defined
by a sequence of values b1, b2, . . . , bn (one per task).

2) We then present Algorithm 3, which either constructs S
or asserts that T is infeasible; we show that the running
time of Algorithm 3 is polynomial in the input size.

3) Finally, we show that if Algorithm 3 is successful then S
is a feasible schedule for the SAS, while if Algorithm 3
fails then T is infeasible (even for EDF).

1) Definition of procrast schedule S: We define a schedule
S for the time interval [0, pn). This is sufficient for describing
the full schedule, since we assume the period lengths to be
harmonic, and thus, pn equals the hyperperiod of all period
lengths in the instance.

Schedule S is defined by considering tasks in order; we
denote by Sj , j = 1, 2, . . . , n, the partial schedule of jobs
released by tasks τ1, τ2, . . . , τj . Algorithm 3 starts from the
empty schedule S0 and, at each iteration j = 1, 2, . . . , n,
defines Sj based on Sj−1 by specifying how τj’s jobs are
scheduled. Namely, at iteration j, the algorithm delays the
processing of each job of τj as much as possible given the
execution requirements of all jobs released by shorter-period
tasks specified by Sj−1. We refer to the schedule also as a
procrast schedule. In particular, in a procrast schedule each
job of task τ1 (the shortest-period task) is scheduled for c1
time units just before its deadline. Jobs of τj , j = 2, . . . , n,
are scheduled similarly; however, for these jobs we have to

6

take into account Sj−1 and, in particular, the busy times in
which the processor is executing jobs of τ1, . . . , τj−1.

To define S formally, it is sufficient to specify the time
instant at which each job starts execution. In fact, at any point
in time t there can be several pending jobs (i.e., jobs that have
started execution but that have not been completed), each one
released by a different task; among this set of jobs, at time t
schedule S executes the one released by the task τi having the
least index i.

The critical observation is that the time instants in which
each job starts execution follow a regular pattern. In the
following we define a value bj for each task τj and use it
for all jobs released by τj : job i(j) of τj , which is released
at time ai(j), starts execution at time ai(j) + bj . At time t,
S executes job i(j) if t ≥ ai(j) + bj , i(j) is not completed
and if no job released by a higher priority (shorter period)
task is pending. In fact, the resulting schedule can be seen as
a fixed priority schedule, where the priorities are assigned to
the tasks according to their period lengths and the release of
each job i(j) is moved to ai(j) + bj . Intuitively, ai(j) + bj
is the maximum amount of time by which we may delay the
execution of job i(j) without missing its deadline, given the
schedule of tasks τ1, ..., τj−1. For this reason, we call bj the
panic offset of task τj .

We give details on how to compute panic offsets later. For
illustrative purposes, consider task τ1 (the shortest period task).
We have b1 = d1 − c1. Clearly, for each job i(1) released by
τ1 we have that ai(1) + b1 = ai(1) + d1 − c1 = d̄i(1) − c1
is the latest point in time to start i(1), since otherwise the
deadline of i(1) would be missed. We define a schedule S1

for the jobs of τ1 by executing each job i(1) of τ1 during the
interval [ai(1) + b1, ai(1) + d1).

Definition 2 (Procrast schedule Sj). A schedule is called
procrast schedule Sj with panic offsets b1, ..., bj (or only
procrast schedule Sj for short) if it satisfies the following
properties:

1) each job i(1) of τ1 is executed for c1 time units during
the interval [ai(1) + b1, ai(1) + d1);

2) each job i′(j′) of task τj′ , j′ = 2, ..., j, is executed for
cj′ time units during the interval [ai′(j′) + bj′ , ai′(j′) +
dj′) when no job created by some task τj′′ , j′′ < j′, is
running;

3) for each job i′(j′) of τj′ , at each time t ∈ [ai′(j′) +
bj′ , ai′(j′)+dj′) the processor is never idle and processes
a job of a task in {τ1, . . . , τj′}.

Observe that the panic offsets b1, . . . , bj are sufficient to
define the procrast schedule Sj for the task set {τ1, . . . , τj}.
We let S := Sn and we observe that, by 1) and 2) in the
above definition, a procrast schedule is a feasible schedule.
Also notice that each job i′(j′) of task τj′ runs in particular
during the interval [ai′(j′) + bj′ , ai′(j′) + bj′+1); this fact will
be used in the sequel.

Example 1. Consider T = {τ1, τ2, τ3} with τ1 = (1, 3, 4),
τ2 = (3, 5, 8), τ3 = (3, 10, 16). Figure 2 shows the procrast

schedule S3; the panic offsets are b1 = 2, b2 = 1, b3 = 5.

τ2

τ1

τ3

0 8 164 12

Fig. 2. The procrast schedule for the three tasks of Example 1.

2) Computation of panic offsets: We now present Algo-
rithm 3, which constructs the procrast schedule S for task set
T by computing panic offsets b1, . . . , bn; if the algorithm does
not succeed, then it asserts that T is infeasible. We will also
prove that the running time of the algorithm is polynomial.

The algorithm sorts tasks by non-decreasing period lengths
and then computes S inductively. Namely, it initializes S0 to be
the empty schedule; at each iteration, given a feasible procrast
schedule Sj−1 with b1, ..., bj−1, it computes the panic offset
bj to obtain the procrast schedule Sj . We define schedule S1

by the panic offset b1 := d1 − c1. Observe that this is a
feasible procrast schedule. Now consider some integer j ≥ 2
and suppose there is a feasible procrast schedule Sj−1 for
all tasks τ1, ..., τj−1 satisfying the properties of Definition 2.
By this definition, the busy times of the processor are exactly
∪j∪i [ai(j)+bj , ai(j)+dj). For finding bj we have to compute
the largest value x ≥ 0 such that during [x, dj) the idle time
of the processor equals exactly cj . Then we set bj := x. If
there is no such non-negative value x, then we output that the
task system is infeasible.

Algorithm 3 Computation of Procrast Schedule S
Input: A task system T with harmonic periods
Output: Procrast Schedule S or assertion that T is infeasible

1: sort tasks T such that p1 ≤ p2 ≤ ... ≤ pn
2: set S0 to be empty schedule
3: for j ← 1 to n do
4: if idle time during [0, dj) is strictly less than cj then
5: return task set T infeasible
6: else
7: compute largest x ≥ 0 s.t. Sj−1 has exactly cj units

of idle time in [x, dj)
8: bj ← x
9: Let Sj be the procrast schedule defined by panic

offsets b1, ..., bj
10: end if
11: end for
12: S← Sn
13: return S

In reference to Algorithm 3, we now show how to perform
the test of Line 4 and how to compute the value x (Line 7)
through a polynomial time subroutine that computes the idle
time in Sj−1 during the interval [x, dj) for a given value x.

7

Lemma 5. Consider a feasible procrast schedule Sj−1 for
tasks {τ1, ..., τj−1}, specified by panic offsets b1, ..., bj−1, and
a value x ≥ 0. The amount of idle time in Sj−1 during [x, dj)
can be computed in polynomial time.

Before proving the lemma we show how it allows to
complete the description of Algorithm 3. First of all observe
that Lemma 5 allows to check whether during [0, dj) the
amount of idle time is at least cj (Line 4 of Algorithm 3). If
this is not the case then Algorithm 3 outputs that the system
is infeasible and we stop. Otherwise, we use Lemma 5 several
times to compute the largest value x ≥ 0 such that during
[x, dj) the idle time of the processor equals exactly cj (see
Line 7 in the description of Algorithm 3). We do this with
a binary search procedure. First, we define a lower bound
LB := 0 and an upper bound UB := dj . We keep as an
invariant that the idle time within [LB, dj) is at least cj and the
idle time within [UB, dj) is at most cj . In each iteration, we
check the idle time within [(UB−LB)/2, dj) using Lemma 5
and update LB or UB accordingly. Hence, after O(log(dj))
iterations we find the largest value x with the desired property.
We define the panic offset of task τj to be bj := x and continue
with task τj+1.

The proof of Lemma 5 hinges on the following lemma that
computes in Sj−1 the latest point in time t′ ∈ N before a given
time t ∈ N such that no jobs are started that will not finish
by time t′. Note that this is almost but not exactly the same
as saying that the processor is idle at time t′. In particular, it
might be the case that t′ ∈ [ai(j) + bj , ai(j) + dj) for some
job i(j) and no other job is pending. Formally, we have the
following lemma.

Lemma 6. Consider a feasible procrast schedule Sj−1 for
tasks {τ1, ..., τj−1}, specified by panic offsets b1, ..., bj−1, and
a value t ∈ N. There is a polynomial time algorithm which
computes the largest value t′ ≤ t such that t′ /∈ (ai(j′) +
bj′ , ai(j′) + dj′) for each task τj′ with j′ ∈ {1, ..., j − 1} and
each job i(j′).

Proof: First, we consider the given value t and verify
whether t ∈ (ai(j′)+bj′ , ai(j′)+dj′) for some job i(j′) of some
task τj′ , j′ ∈ {1, ..., j − 1}. This can be done in polynomial
time because if there is such a job then it has to be the job i(j′)
with t ∈ [ai(j′), ai(j′)+1) and its index i(j′) equals bt/pj′c.
Thus, for each task j′ ∈ {1, ..., j−1} we consider the job with
index bt/pj′c and verify if t ∈ (ai(j′) + bj′ , ai(j′) + dj′). If
this is not the case for any j′ ∈ {1, ..., j − 1}, then we output
t′ := t and we are done.

Consider now the case that t ∈ (ai(j′) + bj′ , ai(j′) +dj′) for
some job i(j′). We define t0 := t and let j(0) be the index
of a task such that t0 ∈ (ai(j(0)) + bj(0) , ai(j(0)) + dj(0)) for
some job i(j(0)). We define t1 := ai(j(0)) + bj(0) < t0. We
iterate: If t1 has the property stated in the lemma, that is,
t1 /∈ (ai(j′) + bj′ , ai(j′) + dj′) for any job of any task τj′ with
j′ ∈ {1, ..., j − 1}, then we are done and define t′ := t1. (We
verify this as described above for value t.) Otherwise there
must be a task j(1) such that t1 ∈ (ai(j(1)) + bj(1) , ai(j(1)) +

dj(1)) for some job i(j(1)) of j(1). In that case j(0) < j(1),
since by definition of procrast schedules at time t1 a job of
task j(0) is executed and during the whole interval [ai(j(1)) +

bj(1) , ai(j(1))+dj(1)) jobs of tasks having index in {1, ..., j(1)}
are executed (note that j(0) 6= j(1) since dj ≤ pj for all
tasks τj). We iterate this procedure until we find a value tk
with the properties that we require for t′. Similarly as before,
we can argue that j(k

′−1) < j(k
′) for all k′ ≤ k and thus at

most n iterations are needed. In every iteration we check for
each task τj′ ∈ {τ1, ..., τj−1} whether it has a job i(j′) with
ti ∈ (ai(j′) + bj′ , ai(j′) + dj′). By the above reasoning, it is
sufficient to check this for the job with index bt/pj′c. Thus,
the overall running time of this subprocedure is bounded by
O(n2). The procedure is summarized in Algorithm 4.

We are now ready to prove Lemma 5.
Proof (of Lemma 5): The amount of idle time in [x, dj]

equals the amount of idle time in [0, dj) minus the amount
of idle time in [0, x). Thus, it is sufficient to provide a
polynomial-time routine for computing the amount of idle time
for the interval [0, x) for any value x ≥ 0. We do this as
follows.

Using the procedure from Lemma 6 we compute the last
point in time x′ ≤ x such that x′ /∈ (ai(j′)+bj′ , ai(j′)+dj′) for
each task j′ ∈ {1, ..., j − 1} and each job i(j′). By definition
of procrast schedules, the processor is busy during the interval
[x′, x). On the other hand, during the interval [0, x′) procrast
executes only those jobs whose deadline is in [0, x′). Given x′,
we can easily compute for each task j′ how many jobs of j′

have their deadline in [0, x′). Hence, we can calculate the total
execution time C of jobs i with d̄i ∈ [0, x′). Then, the amount
of idle time within [0, x) equals x′ − C.

The overall procedure requires two calls to the procedure
from Lemma 6 whose running time is bounded by O(n2).
Thus, the total running time of this procedure is also bounded
by O(n2).

3) Feasibility of the procrast schedule S (the feasibility
test): The feasibility test for a given task system T now is
as follows. We consider all tasks τj ∈ T one after the other in
order of their indices and run the algorithm for computing the
panic offset bj . If for some j there is no non-negative value
bj then we output that the system T is infeasible. Otherwise,
we output that T is EDF-schedulable.

In the following two lemmas we show that both actions are
justified. First, we argue that if bj ≥ 0 for a given feasible
procrast schedule Sj−1 for tasks {τ1, . . . , τj−1}, then Sj is
feasible. Secondly, we need to show that if bj < 0 then the
worst-case instance is infeasible.

Lemma 7. If Sj−1, j = 2, 3, . . . , n, is a feasible procrast
schedule and during [0, dj) the amount of idle time is at least
cj then also Sj is a feasible procrast schedule.

Proof: Since the period lengths are harmonic, the hyper-
period of {p1, ..., pj} equals pj . Since we consider only the
synchronous arrival sequence, if the first job of task τj meets
its deadline then all jobs of τj meet their deadline. The former
property is ensured due to the definition of bj . In fact, bj ← x

8

Algorithm 4 Computation of last time point t′ before t without
started job in procrast schedule S (Lemma 6)
Input: A procrast schedule S, specified by panic offsets

b1, ..., bj−1 and a value t
Output: largest value t′ ≤ t such that t′ /∈ (ai(j′)+bj′ , ai(j′)+

dj′) for each task j′ ∈ {1, ..., j − 1} and each job i(j′)

1: if t′ /∈ (ai(j′) + bj′ , ai(j′) + dj′) for each task τj′ with
j′ ∈ {1, ..., j − 1} and each job i(j′) then

2: t′ ← t
3: return t′

4: else
5: t0 ← t′

6: k ← 0
7: while there is a task τj′ with j′ ∈ {1, ..., j − 1} and a

job i(j′) with tk ∈ (ai(j′) + bj′ , ai(j′) + dj′) do
8: tk+1 ← ai(j′) + bj′

9: k ← k + 1
10: end while
11: end if
12: t′ ← tk
13: return t′

is executed in the j-th iteration of the main loop of Algorithm
3 only if there are at least cj units of idle time in Sj−1. Hence,
the schedule Sj is feasible.

Now we show that if our procedure does not give a feasible
schedule, then no feasible schedule exists.

Lemma 8. Given the procrast schedule Sj−1 for the tasks
{τ1, ..., τj−1} computed by the above procedure, if the amount
of idle time during the interval [0, dj) is strictly smaller than
cj then task set {τ1, ..., τj} is infeasible.

Proof: We show by induction the following slightly
stronger claim. For each j′ ≤ j − 1 the computed schedule
Sj′ maximizes the idle time during the interval [0, x) for each
x ≥ 0 simultaneously. Formally, for each j′ ≤ j− 1 and each
x ≥ 0 there is no feasible schedule for the tasks {τ1, ..., τj′}
with strictly more idle time during [0, x) than Sj′ .

We show the claim by induction over j′. For j′ = 1 the
claim is immediate since we start each job of τ1 as late as
possible. Now suppose that the claim is true for some value
j′ − 1 and consider the schedule Sj′ and a value x ≥ 0. First
assume that there is no job i of τj′ such that x ∈ [ai, d̄i) and
assume that there are exactly k jobs i′ of τj′ such that d̄i′ ≤ x.
Then any feasible schedule has to work for k ·cj′ units of time
on jobs of τj′ during [0, x) and thus the claim follows from
the induction hypothesis.

Now suppose that x ∈ [ai′ , d̄i′) for some job i′ created
by task τj′ . Since pj′′ |pj′ and dj′′ ≤ pj′′ for each j′′ ≤ j′

we can assume w.l.o.g. that x ∈ [0, dj′), i.e., i′ is the first
job created by task τj′ . Suppose by contradiction that there is
some feasible schedule S̄ for tasks {τ1, . . . , τj′} with strictly
more idle time during [0, x) than Sj′ . W.l.o.g. we can assume
that in S̄ between the time when i′ is started and dj′ the

processor has no idle time, i.e., intuitively, job i′ is started as
late as possible in S̄. Let s denote the time when i′ is started
in S̄, i.e., executed for the first time, and recall that bj is the
respective time in Sj′ (since i′ is the first job of task τj′).
Observe that S̄ does not have any idle time during [s, dj′). If
x ≤ min{s, bj′} then we have a contradiction to the induction
hypothesis as then during [0, x) the schedules Sj′ and Sj′−1
are identical, in particular they do not execute a job from task
τj , and they maximize the amount of idle time during [0, x)
among all feasible schedules for the tasks {τ1, ..., τj′}.

Now suppose that x > min{s, bj′}. If s ≤ bj′ then in
particular x > s and also S̄ must have more idle time during
[0, s) than Sj′ (using that S̄ does not have any idle time during
[s, dj) ⊇ [s, x)). However, during [0, s) the schedules Sj′ and
Sj′−1 are identical and do not execute a job from task τj (since
s ≤ bj′) which contradicts the induction hypothesis using the
same arguments as for the case that x ≤ min{s, bj′}.

The last case is that s > bj′ , i.e., in S̄ the job i′ starts
later than in Sj′ . Denote by y the amount of idle time during
[0, dj′) in S̄ and by y′ the amount of idle time during [0, dj′)
in Sj′ . As during [bj′ , dj′) there is no idle time in Sj′ we
have that y > y′. However, if we take the schedule S̄ and
remove all jobs from task τ ′j then we get a schedule S̄′ for
the tasks {τ1, ..., τj′−1} whose idle time during [0, dj′) equals
y + cj′ . Likewise, the schedule Sj′−1 has y′ + cj′ units of
idle time during [0, dj′). The induction hypothesis implies that
y + cj′ ≤ y′ + cj′ which implies that y ≤ y′, a contradiction.

Finally, we show how the above claim implies the lemma.
If in Sj−1 the amount of idle time during the interval [0, dj)
is strictly smaller than cj then the latter has to hold for any
feasible schedule for the tasks {τ1, ..., τj−1}. Thus, there can
be no feasible schedule for the tasks {τ1, ..., τj}.

If, after completing all n iterations, the schedule S (= Sn)
is feasible, then the task set T is feasible and therefore EDF-
schedulable. This yields the following theorem.

Theorem 3. There is a polynomial time algorithm that, on
input a constrained-deadline harmonic task set T, decides
whether T is EDF-schedulable on one processor.

Proof: We use Algorithm 3 to compute the procrast
schedule S. If the routine fails then, according to Lemma 8,
task set T is infeasible. On the other hand, if the routine is
successful, then by Lemma 7 the resulting schedule is feasible
and thus T is feasible (and therefore EDF-schedulable).

The main loop of Algorithm 3 runs in n iterations and in the
j-th iteration the running time is dominated by the O(log dj)
calls to the subroutine of Lemma 5, each having a running
time of O(n2). Thus, the overall running time is bounded by
O(n3·log(maxnj=1 dj)) = O(n3·logP), which is polynomially
bounded in the input length.

V. CONCLUSION

Two of the most basic problems in real-time scheduling
are computing the response time of a given task system and
checking EDF-schedulability on a uniprocessor. It is known
that both problems are computationally hard [13], [15] and

9

therefore, it is expected that no efficient algorithm exists. On
the other hand, instances that arise in practice are often very
special, in the sense that their period lengths are harmonic.
In fact, harmonic period lengths allow high utilizations of the
processors, which make them a natural choice for a system
designer. For this important special class of instances, in
this paper we presented the first efficient, exact polynomial
time algorithms. This provides evidence that the computational
complexity of the non-harmonic instances mostly stems from
the possibly complicated algebraic structures in the period
lengths.

Our results hold only for constrained-deadline task systems.
Extending them to arbitrary (unconstrained) task systems is
an interesting open question. Also, it would be interesting to
extend our results to the study of exact schedulability tests for
other algorithms, such as FPZL (Fixed Priority until Zero Lax-
ity). Another important research topic is to extend our results
to more general system models, including other parameters
such as blocking times caused by shared resources. Finally,
we observe that while our schedulability tests for fixed priority
and fully harmonic EDF-schedulability are very efficient and
applicable to large task sets, it would be interesting to improve
the running time of the EDF-schedulability test for harmonic
periods (Algorithm 3).

REFERENCES

[1] K. Albers and F. Slomka. An event stream driven approximation for
the analysis of real-time systems. In Proc. 16th Euromicro Conf. on
Real-Time Systems, pages 187–195. IEEE, 2004.

[2] N. Audsley, A. Burns, M. Richardson, and A. Wellings. Applying new
scheduling theory to static priority pre-emptive scheduling. Software
Engineering Journal, 8(5):284–292, 1993.

[3] S. K. Baruah. Efficient computation of response time bounds for
preemptive uniprocessor deadline monotonic scheduling. Real-Time
Systems, 47(6):517–533, 2011.

[4] S. K. Baruah and J. Goossens. Scheduling real-time tasks: Algorithms
and complexity. In J. Y.-T. Leung, editor, Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, chapter 28. CRC Press,
2003.

[5] S. K. Baruah, R. R. Howell, and L. E. Rosier. Feasibility problems for
recurring tasks on one processor. Theoretical Comput. Sci., 118(1):3–20,
1993.

[6] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor. Real-Time Systems, 2:301–324, 1990.

[7] E. Bini, G. C. Buttazzo, and G. Buttazzo. Rate monotonic analysis: The
hyperbolic bound. IEEE Trans. Comput., 52(7):933–942, 2003.

[8] E. Bini, T. H. C. Nguyen, P. Richard, and S. K. Baruah. A response-
time bound in fixed-priority scheduling with arbitrary deadlines. IEEE
Trans. Comput., 58(2):279–286, 2009.

[9] D. Chen, A. K. Mok, and T.-W. Kuo. Utilization bound revisited. IEEE
Trans. Comput., 52(3):351–361, 2003.

[10] R. I. Davis, A. Zabos, and A. Burns. Efficient exact schedulability
tests for fixed priority real-time systems. IEEE Trans. Computers,
57(9):1261–1276, 2008.

[11] M. L. Dertouzos. Control robotics: The procedural control of physical
processes. In Proc. IFIP Congress, pages 807–813, 1974.

[12] F. Eisenbrand, K. Kesavan, R. S. Mattikalli, M. Niemeier, A. W.
Nordsieck, M. Skutella, J. Verschae, and A. Wiese. Solving an avionics
real-time scheduling problem by advanced IP-methods. In Algorithms –
ESA 2010, pages 11–22. Springer, 2010.

[13] F. Eisenbrand and T. Rothvoss. Static-priority real-time scheduling:
Response time computation is NP-hard. In Proc. IEEE Real-Time
Systems Symp., pages 397–406. IEEE, 2008.

[14] F. Eisenbrand and T. Rothvoss. New hardness results for diophantine
approximation. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques – APPROX-RANDOM 2009,
pages 98–110. Springer, 2009.

[15] F. Eisenbrand and T. Rothvoss. EDF-schedulability of synchronous pe-
riodic task systems is coNP-hard. In Proc. 21st ACM-SIAM Symposium
on Discrete Algorithms. SIAM, 2010.

[16] M. Fan and G. Quan. Harmonic semi-partitioned scheduling for fixed-
priority real-time tasks on multi-core platform. In Proc. of DATE, pages
503–508. IEEE, 2012.

[17] N. Fisher and S. K. Baruah. A fully polynomial-time approximation
scheme for feasibility analysis in static-priority systems with arbitrary
relative deadlines. In Proc. 17th Euromicro Conf. on Real-Time Systems,
pages 117–126. IEEE, 2005.

[18] R. Ha and J. W.-S. Liu. Validating timing constraints in multiprocessor
and distributed real-time systems. In Proc. 14th Int. Conference on
Distributed Computing Systems, pages 162–171, 1994.

[19] C.-C. Han and H.-Y. Tyan. A better polynomial-time schedulability test
for real-time fixed-priority scheduling algorithm. In Proc. IEEE Real-
Time Systems Symp., pages 36–45. IEEE, 1997.

[20] D. S. Hochbaum and D. B. Shmoys. Using dual approximation
algorithms for scheduling problems theoretical and practical results. J.
ACM, 34(1):144–162, 1987.

[21] E. Horowitz and S. Sahni. Exact and approximate algorithms for
scheduling nonidentical processors. J. ACM, 23(2):317–327, 1976.

[22] M. Joseph and P. K. Pandya. Finding response times in a real-time
system. The Computer Journal, 29(5):390–395, 1986.

[23] T.-W. Kuo and A. K. Mok. Load adjustment in adaptive real-time
systems. In Proc. IEEE Real-Time Systems Symp., pages 160–170. IEEE,
1991.

[24] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In Proc.
IEEE Real-Time Systems Symp., pages 166–171. IEEE, 1989.

[25] J. P. Lehoczky, L. Sha, J. K. Strosnider, and H. Tokuda. Fixed priority
scheduling theory for hard real-time systems. In A. van Tilborg and
G. Koob, editors, Foundations of Real-Time Computing: Scheduling and
Resource Management, pages 1–30. Kluwer Academic, New York, 1991.

[26] J. Y.-T. Leung and M. L. Merrill. A note on preemptive scheduling of
periodic, real-time tasks. Inf. Process. Lett., 11(3):115–118, 1980.

[27] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic, real-time tasks. Perform. Evaluation, 2(4):237–
250, 1982.

[28] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[29] A. K. Mok. Fundamental design problems of distributed systems for
the hard real-time environment. PhD thesis, Laboratory for Computer
Science, Massachusetts Institute of Technology, 1983. Available as
Technical Report No. MIT/LCS/TR-297.

[30] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A.
Scoredos. Mixed-criticality real-time scheduling for multicore systems.
In 10th IEEE International Conference on Computer and Information
Technology, CIT 2010, pages 1864–1871, 2010.

[31] T. H. C. Nguyen, P. Richard, and E. Bini. Approximation techniques
for response-time analysis of static-priority tasks. Real-Time Systems,
43(2):147–176, 2009.

[32] C. Okwudire, M. van den Heuvel, R. Bril, and J. Lukkien. Exploiting
harmonic periods to improve linearly approximated response-time upper
bounds. In Proc. ETFA, pages 1–4. IEEE, 2010.

[33] O. Serlin. Scheduling of time critical processes. In AFIPS Spring Joint
Computing Conference, pages 925–932, 1972.

[34] L. Sha, T. F. Abdelzaher, K.-E. Årzén, A. Cervin, T. P. Baker, A. Burns,
G. C. Buttazzo, M. Caccamo, J. P. Lehoczky, and A. K. Mok. Real
time scheduling theory: A historical perspective. Real-Time Systems,
28(2-3):101–155, 2004.

[35] L. Sha and J. B. Goodenough. Real-time scheduling theory and Ada.
IEEE Computer, 23(4):53–62, 1990.

[36] M. Sjödin and H. Hansson. Improved response-time analysis calcula-
tions. In Proc. IEEE Real-Time Systems Symp., pages 399–408. IEEE,
1998.

[37] K. Tindell, A. Burns, and A. J. Wellings. An extendible approach
for analyzing fixed priority hard real-time tasks. Real-Time Systems,
6(2):133–151, 1994.

[38] F. Zhang and A. Burns. Schedulability analysis for real-time systems
with EDF scheduling. IEEE Trans. Comput., 58(9):1250–1258, 2009.

10

